An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification m...In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.展开更多
In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-redu...In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.展开更多
永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在...永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。展开更多
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
文摘In order to solve the problem of difficult modeling and identification caused by time-variable parameters,multiple inputs and outputs and unstable open loop,a subsystem model-based close-loop grey-box identification method was put forward when consider the main coupling effects of hydraulic Stewart platform.Firstly,the whole system is divided into three TITO(Two Input Two Output) subsystems according to the characteristics of the pseudo-mass matrix,hence transfer function matrix model of the subsystem can also be found.Secondly,since the Stewart platform is unstable,the close-loop transfer model of the subsystem is derived under the proportional controllers.The inverse M serial is adopted as the identification signal to get the experimental data.All parameters of the subsystem are determined in close-loop indirect identification by PEM(Prediction Error Method).Finally,a case study validates the correctness and effectiveness of the subsystem model-based close-loop grey-box identification method for hydraulic Stewart platform.
基金Supported by Key Research and Development Program of Shandong Province(2017CXGC0210)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2017D01)+3 种基金National Key R&D Program of China(2016YFD0201100)National Natural Science Foundation of China(31600021)Modern Agricultural Industry Technology System of China for Apple(CARS-27)Dongying Science and Technology Program(2015GG0104)
文摘In order to optimize and transform closed mature apple orchards with standard rootstocks and improve the quality of fruit,taking a closed Red Fuji apple orchard as the test object,the effects of different density-reducing methods(deinterlacing,removing every other plant in each row,removing every other plant every other row)on the canopy microenvironment,tree structure,leaf photosynthesis and fruit quality were studied.The results showed that different density-reducing methods significantly reduced the orchard coverage and increased the crown transmittance.Among them,the deinterlacing treatment was the best in improving the population structure of the closed orchard,as it reduced the orchard coverage rate by 55.68 percentage points and the canopy transmittance by 82.38 percentage points,compared with the control(CK).Different density-reducing methods all could significantly reduce the branch amount in the closed orchard and optimized the branch composition.The three density-reducing methods decreased the number of branches per plant by 18.96%,12.41%and 19.58%,respectively,compared with the CK.And compared with the CK,the proportion of short branches and leafy branches to the total branches was increased by 17.13%,14.27%and 7.37%,respectively,and the proportion of long branches and developmental branches to the total branches was decreased by 24.47%,18.04%and 10.79%,respectively.The effects of the different density-reducing methods on the temperature,relative light intensity,SPAD and leaf photosynthetic rate in canopies all followed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing>removing every other plant in each row>removing every other plant every other row>CK,while those on the relative humidity showed an order of deinterlacing<removing every other plant in each row<removing every other plant every other row<CK.The average single fruit weight(238.3 g),coloring index(89.2),smoothness index(83.2),soluble solid content(15.1%)and high quality fruit rate(82.4%)of the deinterlacing treatment were higher than those of other treatments,and the values were 18.2%,11.4%,5.85%,26.9%and 25.2%higher than the CK,respectively.The use of dein ̄terlacing to reduce density is the best for improving the microenvironment of closed apple orchards and improving the photosynthetic efficiency and fruit quality.
文摘永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。