Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations o...Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.展开更多
It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the ef...It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.展开更多
The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatme...The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatment sessions for the left sided breast patients were observed and recorded. Measurements of routine set-up variation for 24 patients were performed by matching the cone beam computed tomography (CBCT) and the planning computed tomography (CT). Scans of all five fractions per patient were used to quantify the setup variations with standard deviation (SD) in all the three directions (anterior posterior, left right, and superior inferior). The patients DIBH comfort and knowledge was also evaluated. The average translational errors for the anterior posterior (AP, z), left-right (LR, x), and Superior-inferior (SI, y) directions were 0.40 cm, 0.40 cm, and 0.40 cm, respectively. The translation variation of the three directions showed statistical significance (P < 0.05). On comfort and knowledge investigation, among all participants, 80% moderately agreed that the therapist’s instructions for operating the deep inspiration breath hold (DIBH) technique were easy to understand, and 63.33% indicated that their comfort with the DIBH technique was neutral or average. The inter-fraction variations in patients with left-sided breast cancer were qualitatively analyzed. Significant shifts between CBCT and planning CT images were observed. The daily treatment verification could assist accurate dose delivery.展开更多
[Objective] This study aimed to promote the combination of cultivation and livestock farming, and to explore an environment-protecting farming style. [Method]The effects of anaerobically fermented complete compound so...[Objective] This study aimed to promote the combination of cultivation and livestock farming, and to explore an environment-protecting farming style. [Method]The effects of anaerobically fermented complete compound sow feed, added with Lactobacillus and Bacillus subtilis, on the chemical fractionation of copper, iron, zinc and manganese in feed and pig manure and skatole content in pig manure were investigated. [Result] Compared with those in the non-fermented feed, in the fermented feed and pig manure, the acetic acid-extractable copper, iron, zinc and manganese contents increased significantly(P0.05), the reduced copper and iron contents increased significantly(P 0.05), the oxidized copper and iron contents reduced significantly(P0.05), and the residual copper contents remained unchangeable(P0.05). The pH value of fermented feed decreased significantly(P0.05), and that of pig manure increased significantly(P0.05). The skatole content in pig manure decreased significantly(P 0.01). The Lactobacillus abundance and amylase and cellulase activity increased significantly(P 0.05). [Conclusion] The fermentation of feed changed the chemical fractionation of copper, iron, zinc and manganese in feed and pig manure, and reduced the manure odor.展开更多
Typical sediments from Taihu Lake, a meso-to-hypereutrophic lake, were collected and examined on the basis of P-fractionation by sequential extraction scheme. Sedimentary inorganic phosphorus were fractioned into four...Typical sediments from Taihu Lake, a meso-to-hypereutrophic lake, were collected and examined on the basis of P-fractionation by sequential extraction scheme. Sedimentary inorganic phosphorus were fractioned into four forms and the rank order according to the mean concentration of P-fractions in Taihu Lake was NaOH-P>BD-P>HCl-P>NH_4Cl-P. The concentrations of BD-P were linearly correlated with the content of active Fe(R2=0.96). Also, the linear relationship between the sum of BD-P and NaOH-P and the sum of active Fe and active Al content was observed within the six sediments investigated(R2=0.96). Moreover, the bio-available phosphorus(BAP) content was estimated by the sum of NH_4Cl-P, BD-P, and NaOH-P, viz. BAP=NH_4Cl-P+NaOH-P+BD-P. In Taihu Lake, the BAP contents are ranging from 0.10 mg/g dw to 1.25 mg/g dw, and average 0.40 mg/g dw for all sediment samples. The relative contributions of BAP to total sedimentary phosphorus(TP) and inorganic sedimentary phosphorus(IP) range from 18.67% to 50.79%(33.61% on average) and from 52.82% to 82.09%(67.81% on average), respectively.展开更多
REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The we...REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism.展开更多
This work investigated the distribution and speciation of Cd, Cu, Pb, Fe and Mn in the shallow sediments of Jinzhou Bay, Northeast China, which has been heavily contaminated by nonferrous smelting activities. The conc...This work investigated the distribution and speciation of Cd, Cu, Pb, Fe and Mn in the shallow sediments of Jinzhou Bay, Northeast China, which has been heavily contaminated by nonferrous smelting activities. The concentrations of Cd, Cu and Pb in sediments were found to be 100, 13 and 7 times, respectively, being higher than the national guideline (GB 18668-2002). Sequential extraction test showed that 39%-61% of Cd were exchangeable fractions, indicating that Cd in the sediments posed a high risk to local environments. While Cu and Pb were at moderate risk levels. According to the relationships between percentage of metal speciation and total metal concentration, it was concluded that the distributions of Cd, Cu and Pb in some geochemical fractions were dynamic in the process of pollutants migration and the stability of metals in sediments of Jinzhou Bay decreased in the order of Pb 〉 Cu 〉 Cd.展开更多
Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, th...Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionations of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionations in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.展开更多
^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal specie...^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.展开更多
The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model,...The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), 6D = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of 6 and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the 6 and d, and vice versa. However, 6 and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Uriimqi is simulated. The simulated stable isotopic ratio vs temperature and the SD vs δ18O curves are very consistent with the actual regressions and MWL at Uriimqi, respectively.展开更多
Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especiall...Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl^3+-bearing species. Our NVE fractionation results of oxidizing Tl^+ to Tl^3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be0.2–0.3 e-unit fractionation between sulfides and silicates at 1650 ℃. It is consistent with our calculation results,which are in the range of 0.17–0.38 e-unit. Importantly,Tl’s concentration in the bulk silicate Earth(BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-contentbased estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the lateaccreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205 Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tlbearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.展开更多
Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help...Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.展开更多
Accumulation and fractionation of rare earth elements (REEs) were studied through applications of exogenous REEs in soils with pot-cultured rice for 2 years. The results show that the biomass of rice consistently de...Accumulation and fractionation of rare earth elements (REEs) were studied through applications of exogenous REEs in soils with pot-cultured rice for 2 years. The results show that the biomass of rice consistently decreases at sprouting and maturity stages when the amount of exogenous REEs are over 400 mg· kg^- 1. It illustrates that the endurance of rice to exogenous REE exposure is much weaker than that of wheat. The distribution patterns of REEs in rice of the control are similar to that in the soil, both exhibiting light REE (LREE) enrichment and positive Tb in the roots and the aboveground parts. Applications of exogenous REEs ranging from 400 to 1200 mg· kg^- 1 have significant effects on the distribution patterns of REEs in roots, some effects in stems and leaves, and almost no effects in grains. Accumulation rates of REEs in different organs follow the order of roots 〉 leaves 〉 stems 〉 panicle axes and crusts 〉 grains. The roots take up different REEs at almost the same rates, except for the selective accumulation of Th. In the aboveground parts, the accumulation rates of middle REEs (MREEs) and heavy REEs (HREEs) are higher than those of LREEs, there are significant selective accumulations of Eu and Tb. Accumulation rates of REEs in the roots, stems and leaves increase with the increasing applications of exogenous REEs, but they change slightly in the panicle axes, crusts and grains, demonstrating that it is easier for the roots, stems and leaves to accumulate exogenous REEs. Selective accumulation and fractionation of exoge nous Nd are also observed in rice organs including grains.展开更多
Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely pr...Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely proportional to temperature. However, under kinetic evaporation condition, the fi'actionation of stable isotopes is not only related to the phase temperature but also influenced by the atmospheric humidity and the mass exchange between liquid and vapor phases. The ratio 6 in residual water will not change with f after undergoing evaporation of a long time for great relative humidity. The rate that the evaporating water body reaches isotopic steady state is mainly dependent on the relative humidity in atmosphere. The analysis shows that the actual mean linear variety rates, about -30.0, of the δ^18O in residual water versus the residual water proportion at Nagqu and Amdo stations are consistent with the simulated process under temperature of 20℃ and relative humidity of 50%. The distillation line simulated under Rayleigh equilibrium condition is analogous to the global meteoric water line (MWL) as the temperature is about 20℃. Under non-equilibrium condition, the slope and constant values of distillation line are directly proportional to temperature and relative humidity. According to the basic data, the simulated distillation line is very consistent with the actual distillation line of Qinghai Lake.展开更多
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationship...Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenoerysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure 〉4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure -1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at 〉4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at 〉4±1 kbar to mainly olivine+plagioclase crystallization at 〈1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.展开更多
Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydro...Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydrophobic neutrals(HON) and hydrophilic matter(HIM). In total carbon content of DOM, 35.32% were the HIM and only 0.73% the HOB. However, HOA and AIM altogether occupied 53.45%, while the HON fraction represented 10%. The sorption experiments were conducted to determine the sorption capacity of pyrene on unfractionated DOM and its fractions. Elemental analysis, 1H-NMR and FTIR spectra were carried out on unfractionated DOM and its fractions to examine the relationship between the structure of DOM and partition coefficients(K oc). The results showed that HON had a greater affinity for binding pyrene than other fractions. While HON was characterized by large long-chain alkylate (aliphatic structure). AIM exhibited relative higher K oc values than HOA and HIM, due to much aromatic structure in AIM, while the high content of carboxylic groups of HOA and HIM depressed their binding capacity. This study demonstrated HON is a key subcomponents of DOM in binding of pyrene, in other words, aliphalic structure in DOM play an important role in binding of pyrene.展开更多
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and...The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of the both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic matter (OM) became predominance for Zn and organic bound Cu occupied the largest portion. There was more available amount for Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to AEXCH and ACAR forms but also in AOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by AEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.展开更多
In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct therm...In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct thermal simulation experiments by mixing the nC18 with the water of different properties and proportions. The yields of natural gas components, the relation among hydrogen isotope composition of each component and the experimental temperatures vs. heating rates have been obtained, and the results indicate that under the higher temperature conditions, the hydrous experiment has obvious impact on gas yields, such as when more water is added, higher amounts of hydrocarbon gas and H2 are yielded, and the existence of water obviously prolongs the temperature interval with the existence of heavy hydrocarbon gas. It also shows that the hydrogen isotope of hydrocarbon gas generated by the hydrous experiment is obviously lighter than that generated by the anhydrous experiment, and with the increasing amount of added water, the δD value of hydrocarbon gas gradually decreases. Compared with gas yields, the variation of δD value is more sensitive to aqueous medium in the thermal simulation experiment. However, compared with the amount of the added water, the aqueous medium property has smaller impact on the gas yields, which still shows the inherit effect on hydrogen isotope composition of aqueous medium. Through the model simulation and the isotope fractionation behavior analysis, it is validated that the hydrogen isotope fractionation process can be well described by the chemical kinetic model. The difference of reaction fraction of normal methane and D-containing methane is large, corresponding to the same activation energy. The content of normal methane is obviously higher in the part with lower activation energy, while the content of D-containing methane is higher in the part with higher activation energy. Therefore, it will result in larger hydrogen isotope fractionation amplitude, and the δD values will be more sensitive to the variation of maturity. Meanwhile, the average activation energy of methane generation from nC18 in the hydrous experiment is higher than that in the anhydrous experiment, and the greater amount of added water, the larger the average activation energy of methane generation reaction. This has laid foundation for its exploratory application in the study of gas reservoir forming history and the gassource correlation, which indicates the research and application prospects in this orientation.展开更多
The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Ch...The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Chl a) concentration ranged from 0.002 to 0.497 mg/m3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer (MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a (0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton (<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Ni(n)o and La Ni(n)a.展开更多
Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal f...Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types, but also on metal loading quantity as well as on interactions among metals in soil. Lead and Cu in red soil appeared mostly in weakly specifically adsorbed (WSA), Fe and Mn oxides bound (OX), and residual (RES) fractions. Zinc existed in all fractions except organic bound one, and Cd was major in water soluble plus exchangeable (SE) one. Different from the results of red soil, Pb and Cu was present in brown soil in all fractions except organic one, but over 75% of Zn and 90% of Cd existed only in SE fraction. Meanwhile, SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher. It is in agreement with low cation exchange capacity and large amounts of metal oxides included in red soil. Metal fractions in soil, especially for water soluble plus exchangeable one, were obviously influenced by other coexisting metals. The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil, which suggest that metal availability be easily affected by their total amounts spiked in red soil. In addition, more metals in red soil were extracted with 0.20 mol L-1 NH4Cl (pH 5.40) than that with 1.0 mol L-1 Mg(NO3)2 (pH 7.0), but the reverse happened in brown soil, implicating significantly different mechanisms of metal desorption from red soil and brown soil.展开更多
基金supported by Chinese NSF project(42,130,114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)and Guizhou Provincial 2021 Science and Technology Subsidies(No.GZ2021SIG).
文摘Isotope eff ects are pivotal in understanding silicate melt evaporation and planetary accretion processes.Based on the Hertz-Knudsen equation,the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions.Here,we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt.We propose a new model designed for silicate melt evaporation under vacuum.Our model considers multiple steps including mass transfer,chemical reaction,and nucleation.Our derivations reveal a kinetic isotopic fractionation factor(KIFF orα)αour model=[m(^(1)species)/m(^(2)species)]^(0.5),where m(species)is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes,respectively.This model can eff ectively reproduce most reported KIFFs of laboratory experiments for various elements,i.e.,Mg,Si,K,Rb,Fe,Ca,and Ti.And,the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the eff ects of low P_(H2)pressure,composition,and temperature.In addition,we find that chemical reactions,diffusion,and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(−ln f)versus ln(t).Notably,our model allows for the theoretical calculations of parameters like activation energy(E_(a)),providing a novel approach to studying compositional and environmental eff ects on evaporation processes,and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.
基金This paper is supported by Chinese NSF project(42130114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA)。
文摘It is well-known that the equilibrium isotope fractionation of mercury(Hg)includes classical massdependent fractionations(MDFs)and nuclear volume effect(NVE)induced mass-independent fractionations(MIFs).However,the effect of the NVE on these kinetic processes is not known.The total fractionations(MDFs+NVEinduced MIFs)of several representative Hg-incorporated substances were selected and calculated with ab initio calculations in this work for both equilibrium and kinetic processes.NVE-induced MIFs were calculated with scaled contact electron densities at the nucleus through systematic evaluations of their accuracy and errors using the Gaussian09 and DIRAC19 packages(named the electron density scaling method).Additionally,the NVE-induced kinetic isotope effect(KIE)of Hg isotopes are also calculated with this method for several representative Hg oxidation reactions by chlorine species.Total KIEs for 202 Hg/^(198)Hg ranging from−2.27‰to 0.96‰are obtained.Three anomalous^(202)Hg-enriched KIEs(δ^(202)Hg/^(198)Hg=0.83‰,0.94‰,and 0.96‰,)caused by the NVE are observed,which are quite different from the classical view(i.e.,light isotopes react faster than the heavy ones).The electron density scaling method we developed in this study can provide an easier way to calculate the NVE-induced KIEs for heavy isotopes and serve to better understand the fractionation mechanisms of mercury isotope systems.
文摘The aim of this study was to investigate the inter-fraction variations, patient comfort and knowledge at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). The differences in set-up that occurred between treatment sessions for the left sided breast patients were observed and recorded. Measurements of routine set-up variation for 24 patients were performed by matching the cone beam computed tomography (CBCT) and the planning computed tomography (CT). Scans of all five fractions per patient were used to quantify the setup variations with standard deviation (SD) in all the three directions (anterior posterior, left right, and superior inferior). The patients DIBH comfort and knowledge was also evaluated. The average translational errors for the anterior posterior (AP, z), left-right (LR, x), and Superior-inferior (SI, y) directions were 0.40 cm, 0.40 cm, and 0.40 cm, respectively. The translation variation of the three directions showed statistical significance (P < 0.05). On comfort and knowledge investigation, among all participants, 80% moderately agreed that the therapist’s instructions for operating the deep inspiration breath hold (DIBH) technique were easy to understand, and 63.33% indicated that their comfort with the DIBH technique was neutral or average. The inter-fraction variations in patients with left-sided breast cancer were qualitatively analyzed. Significant shifts between CBCT and planning CT images were observed. The daily treatment verification could assist accurate dose delivery.
基金Supported by National Natural Science Foundation of China(31172245)Major Agricultural Application Technology Innovation Project in Shandong Province(LCNZ[2014]38)~~
文摘[Objective] This study aimed to promote the combination of cultivation and livestock farming, and to explore an environment-protecting farming style. [Method]The effects of anaerobically fermented complete compound sow feed, added with Lactobacillus and Bacillus subtilis, on the chemical fractionation of copper, iron, zinc and manganese in feed and pig manure and skatole content in pig manure were investigated. [Result] Compared with those in the non-fermented feed, in the fermented feed and pig manure, the acetic acid-extractable copper, iron, zinc and manganese contents increased significantly(P0.05), the reduced copper and iron contents increased significantly(P 0.05), the oxidized copper and iron contents reduced significantly(P0.05), and the residual copper contents remained unchangeable(P0.05). The pH value of fermented feed decreased significantly(P0.05), and that of pig manure increased significantly(P0.05). The skatole content in pig manure decreased significantly(P 0.01). The Lactobacillus abundance and amylase and cellulase activity increased significantly(P 0.05). [Conclusion] The fermentation of feed changed the chemical fractionation of copper, iron, zinc and manganese in feed and pig manure, and reduced the manure odor.
基金The Grand Projects of Innovation Engineering Chinese Academy of Sciences(No. KZCX1 SW 12 2002 2006)
文摘Typical sediments from Taihu Lake, a meso-to-hypereutrophic lake, were collected and examined on the basis of P-fractionation by sequential extraction scheme. Sedimentary inorganic phosphorus were fractioned into four forms and the rank order according to the mean concentration of P-fractions in Taihu Lake was NaOH-P>BD-P>HCl-P>NH_4Cl-P. The concentrations of BD-P were linearly correlated with the content of active Fe(R2=0.96). Also, the linear relationship between the sum of BD-P and NaOH-P and the sum of active Fe and active Al content was observed within the six sediments investigated(R2=0.96). Moreover, the bio-available phosphorus(BAP) content was estimated by the sum of NH_4Cl-P, BD-P, and NaOH-P, viz. BAP=NH_4Cl-P+NaOH-P+BD-P. In Taihu Lake, the BAP contents are ranging from 0.10 mg/g dw to 1.25 mg/g dw, and average 0.40 mg/g dw for all sediment samples. The relative contributions of BAP to total sedimentary phosphorus(TP) and inorganic sedimentary phosphorus(IP) range from 18.67% to 50.79%(33.61% on average) and from 52.82% to 82.09%(67.81% on average), respectively.
基金supported by the National Basic Research Program of China(973 Program) (2009CB421006)the State Key Laboratory of Geological Processes and Mineral Resources (GPMR200843)
文摘REE fractionation during the weathering of dolomite has been recognized for decades.A regolith profile on dolomite in southwest Yunnan of China was selected to investigate the behaviors of REE during weathering.The weathering of dolomite is divided into two stages:the pedogenesis stage and soil evolution stage,corresponding to the saprolites and soils respectively in the regolith profile. SiO_2,TiO_2,P_2O_5,Zr,Hf,Nb and Ta were immobile components during the weathering by and large, while Al_2O_3,K_2O and Fe_2O_3 were lost during the soil evolution stage in the physical form(clay minerals probably).REE were fractionated during the whole weathering of dolomite.The field weathering profile and the lab acid-leaching experiments on dolomite indicate that MREE were enriched clearly relative to other REE during the pedogenesis stage in a "capillary ascending-adsorption" mechanism, but they did not fractionate clearly in the soil evolution stage.REE were lost and accumulated in the weathering front of dolomite during the soil evolution stage in a "physical-chemical leaching" mechanism.
基金supported by the National Basic Research Program (973) of China (No.2009CB426301)the National Natural Science Foundation of China (No.40773076,40703026)
文摘This work investigated the distribution and speciation of Cd, Cu, Pb, Fe and Mn in the shallow sediments of Jinzhou Bay, Northeast China, which has been heavily contaminated by nonferrous smelting activities. The concentrations of Cd, Cu and Pb in sediments were found to be 100, 13 and 7 times, respectively, being higher than the national guideline (GB 18668-2002). Sequential extraction test showed that 39%-61% of Cd were exchangeable fractions, indicating that Cd in the sediments posed a high risk to local environments. While Cu and Pb were at moderate risk levels. According to the relationships between percentage of metal speciation and total metal concentration, it was concluded that the distributions of Cd, Cu and Pb in some geochemical fractions were dynamic in the process of pollutants migration and the stability of metals in sediments of Jinzhou Bay decreased in the order of Pb 〉 Cu 〉 Cd.
基金Project supported by the National Natural Science Foundation of China (40571146)
文摘Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionations of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionations in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.
基金supported by the National Natural Science Foundation of China (No.30870452)the National Chaohu Lake Special Project of China (No.2008ZX07103-005)
文摘^ 15N isotope tracer techniques and ecological modeling were adopted to investigate the fractionation of nitrogen, its uptake and transformation in algae and snail (Bellamya aeruginosa Reeve). Different algal species were found to differ in their uptake of nitrogen isotopes. Microcystis aeruginisa Ktitz. demonstrated the greatest ^15N accumulation capacity, with the natural variation in isotopic ratio (δ^15N) and the isotope fractionation factor (ε,‰) being the highest among the species investigated. The transformation and utilization of ^15N by snails differed depending on the specific algae consumed (highest for Chlorella pyrenoidosa Chick., lowest for M. aeruginisa). When snails was seeded in the experimental pond, the algae population structure changed significantly, and total algal biomass as well as the concentration of all nitrogen species decreased, causing an increase in water transparency. A model, incorporating several chemical and biological parameters, was developed to predict algal biomass in an aquatic system when snails was present. The data collected during this investigation indicated that the gastropods such as snails could significantly impact biological community and water quality of small water bodies, suggesting a role for biological control of noxious algal blooms associated with eutrophication.
基金This work was supported by the National High Technology Research and Development Program of China (863 Program, Grant No. 2002AA135360), the National Natural Science Foundation of China (Grant No. 40271025), the National Key Research Project (Grant No.
文摘The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b and the intercept d of the meteoric water line (MWL), 6D = bδ18O+d, in wet adiabatic cooling are both greater than those in isobaric cooling. The global MWL lies between the two MWLs simulated under wet adiabatic and isobaric cooling processes, respectively. The magnitudes of 6 and d are directly proportional to Si. The greater the Si, the stronger the kinetic fractionation effect, and thus the greater the 6 and d, and vice versa. However, 6 and d have low sensitivity to the liquid-water contents in the cloud. Using the kinetic fractionation model, the variation of stable isotopes in precipitation at Uriimqi is simulated. The simulated stable isotopic ratio vs temperature and the SD vs δ18O curves are very consistent with the actual regressions and MWL at Uriimqi, respectively.
基金the funding supports from the strategic priority research program (B) of CAS (XDB18010100)Chinese NSF projects (Nos. 41530210, 41490635)
文摘Equilibrium isotope fractionation of thallium(Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect(NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl^3+-bearing species. Our NVE fractionation results of oxidizing Tl^+ to Tl^3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be0.2–0.3 e-unit fractionation between sulfides and silicates at 1650 ℃. It is consistent with our calculation results,which are in the range of 0.17–0.38 e-unit. Importantly,Tl’s concentration in the bulk silicate Earth(BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-contentbased estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the lateaccreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205 Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tlbearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.
基金supported by the National Natural Science Foundation of China(Grant No.31470623)the National Basic Research Program of China(Grant No.2011CB403205)
文摘Background: Soil organic carbon(SOC) is a large reservoir of terrestrial carbon(C); it consists of different fractions of varying complexity and stability. Partitioning SOC into different pools of decomposability help better predict the trend of changes in SOC dynamics under climate change. Information on how physical fractions and chemical structures of SOC are related to climate and vegetation types is essential for spatial model ing of SOC processes and responses to global change factors.Method: Soil samples were col ected from multiple representative forest sites of three contrasting climatic zones(i.e. cool temperate, warm temperate, and subtropical) in eastern China. Measurements were made on SOC contents and physical fractions of the 0–20 cm soil layer, and the chemical composition of SOC of the 0–5 cm soil layer, along with measurements and compilation of the basic site and forest stand variables. The long-term effects of temperature, litter inputs, soil characteristics and vegetation type on the SOC contents and factions were examined by means of "space for time substitution" approach and statistical analysis.Result: Mean annual temperature(MAT) varied from 2.1 °C at the cool temperate sites to 20.8 °C at the subtropical sites. Total SOC of the 0–20 cm soil layer decreased with increasing MAT, ranging from 89.2 g·kg^(-1) in cool temperate forests to 57.7 g·kg^(-1) in subtropical forests, at an average rate of 1.87% reduction in SOC with a 1 °C increase in MAT.With increasing MAT, the proportions of aromatic C and phenolic C displayed a tendency of decreases, whereas the proportion of alkyl C and A/O-A value(the ratio of alkyl C to the sum of O-alkyl C and acetal C) displayed a tendency of increases. Overall, there were no significant changes with MAT and forest type in either the physical fractions or the chemical composition. Based on the relationship between the SOC content and MAT, we estimate that SOC in the top 20 soil layer of forests potentially contribute 6.58–26.3 Pg C globally to the atmosphere if global MAT increases by 1 °C–4 °C by the end of the twenty-first century, with nearly half of which(cf. 2.87–11.5 Pg C) occurring in the 0–5 cm mineral soils.Conclusion: Forest topsoil SOC content decreased and became chemical y more recalcitrant with increasing MAT,without apparent changes in the physical fractions of SOC.
文摘Accumulation and fractionation of rare earth elements (REEs) were studied through applications of exogenous REEs in soils with pot-cultured rice for 2 years. The results show that the biomass of rice consistently decreases at sprouting and maturity stages when the amount of exogenous REEs are over 400 mg· kg^- 1. It illustrates that the endurance of rice to exogenous REE exposure is much weaker than that of wheat. The distribution patterns of REEs in rice of the control are similar to that in the soil, both exhibiting light REE (LREE) enrichment and positive Tb in the roots and the aboveground parts. Applications of exogenous REEs ranging from 400 to 1200 mg· kg^- 1 have significant effects on the distribution patterns of REEs in roots, some effects in stems and leaves, and almost no effects in grains. Accumulation rates of REEs in different organs follow the order of roots 〉 leaves 〉 stems 〉 panicle axes and crusts 〉 grains. The roots take up different REEs at almost the same rates, except for the selective accumulation of Th. In the aboveground parts, the accumulation rates of middle REEs (MREEs) and heavy REEs (HREEs) are higher than those of LREEs, there are significant selective accumulations of Eu and Tb. Accumulation rates of REEs in the roots, stems and leaves increase with the increasing applications of exogenous REEs, but they change slightly in the panicle axes, crusts and grains, demonstrating that it is easier for the roots, stems and leaves to accumulate exogenous REEs. Selective accumulation and fractionation of exoge nous Nd are also observed in rice organs including grains.
基金N ational N atural Science Foundation of China, N o.40271025 the N ational H igh Technology Research andD evelopm ent Program of China (863 Program ), N o.2002A A 135360+1 种基金 the Program of Education D epartm ent ofH unan Province,N o.03C210the CA S Tianshan G laciologicalStation Foundation,N o.TZ2000-02
文摘Under Rayleigh equilibrium condition, stable isotopic ratio in residual water increases with the decrease of the residual water proportion f exponentially, and the fractionation rate of stable isotopes is inversely proportional to temperature. However, under kinetic evaporation condition, the fi'actionation of stable isotopes is not only related to the phase temperature but also influenced by the atmospheric humidity and the mass exchange between liquid and vapor phases. The ratio 6 in residual water will not change with f after undergoing evaporation of a long time for great relative humidity. The rate that the evaporating water body reaches isotopic steady state is mainly dependent on the relative humidity in atmosphere. The analysis shows that the actual mean linear variety rates, about -30.0, of the δ^18O in residual water versus the residual water proportion at Nagqu and Amdo stations are consistent with the simulated process under temperature of 20℃ and relative humidity of 50%. The distillation line simulated under Rayleigh equilibrium condition is analogous to the global meteoric water line (MWL) as the temperature is about 20℃. Under non-equilibrium condition, the slope and constant values of distillation line are directly proportional to temperature and relative humidity. According to the basic data, the simulated distillation line is very consistent with the actual distillation line of Qinghai Lake.
基金supported in part by the Pilot Project of Knowledge Innovation Project,Chinese Academy of Sciences(n.:KZCX3-SW-223 and KZCX2-YW-211)the Special Foundation for the Eleventh Five Plan of COMRA(no.:DYXM-115-02-1-03).
文摘Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenoerysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure 〉4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure -1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at 〉4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at 〉4±1 kbar to mainly olivine+plagioclase crystallization at 〈1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.
文摘Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydrophobic neutrals(HON) and hydrophilic matter(HIM). In total carbon content of DOM, 35.32% were the HIM and only 0.73% the HOB. However, HOA and AIM altogether occupied 53.45%, while the HON fraction represented 10%. The sorption experiments were conducted to determine the sorption capacity of pyrene on unfractionated DOM and its fractions. Elemental analysis, 1H-NMR and FTIR spectra were carried out on unfractionated DOM and its fractions to examine the relationship between the structure of DOM and partition coefficients(K oc). The results showed that HON had a greater affinity for binding pyrene than other fractions. While HON was characterized by large long-chain alkylate (aliphatic structure). AIM exhibited relative higher K oc values than HOA and HIM, due to much aromatic structure in AIM, while the high content of carboxylic groups of HOA and HIM depressed their binding capacity. This study demonstrated HON is a key subcomponents of DOM in binding of pyrene, in other words, aliphalic structure in DOM play an important role in binding of pyrene.
基金Project supported by the Provincial Technique Program of Zhejiang Province(No.2004c23024)the Key Science and Technology Program of Hangzhou City(No.2005113A07).
文摘The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of the both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic matter (OM) became predominance for Zn and organic bound Cu occupied the largest portion. There was more available amount for Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to AEXCH and ACAR forms but also in AOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by AEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.
基金supported by grants from the Natural Science Foundation of China(40972101,40572079)the National Key Basic Research and Development Program (2009CB219306)
文摘In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct thermal simulation experiments by mixing the nC18 with the water of different properties and proportions. The yields of natural gas components, the relation among hydrogen isotope composition of each component and the experimental temperatures vs. heating rates have been obtained, and the results indicate that under the higher temperature conditions, the hydrous experiment has obvious impact on gas yields, such as when more water is added, higher amounts of hydrocarbon gas and H2 are yielded, and the existence of water obviously prolongs the temperature interval with the existence of heavy hydrocarbon gas. It also shows that the hydrogen isotope of hydrocarbon gas generated by the hydrous experiment is obviously lighter than that generated by the anhydrous experiment, and with the increasing amount of added water, the δD value of hydrocarbon gas gradually decreases. Compared with gas yields, the variation of δD value is more sensitive to aqueous medium in the thermal simulation experiment. However, compared with the amount of the added water, the aqueous medium property has smaller impact on the gas yields, which still shows the inherit effect on hydrogen isotope composition of aqueous medium. Through the model simulation and the isotope fractionation behavior analysis, it is validated that the hydrogen isotope fractionation process can be well described by the chemical kinetic model. The difference of reaction fraction of normal methane and D-containing methane is large, corresponding to the same activation energy. The content of normal methane is obviously higher in the part with lower activation energy, while the content of D-containing methane is higher in the part with higher activation energy. Therefore, it will result in larger hydrogen isotope fractionation amplitude, and the δD values will be more sensitive to the variation of maturity. Meanwhile, the average activation energy of methane generation from nC18 in the hydrous experiment is higher than that in the anhydrous experiment, and the greater amount of added water, the larger the average activation energy of methane generation reaction. This has laid foundation for its exploratory application in the study of gas reservoir forming history and the gassource correlation, which indicates the research and application prospects in this orientation.
基金The Scientific Research Fund of the Second Institute of Oceanography,SOA under contract No. JG1024the COMRA Special Foundation under contract Nos DY125-13-E-01 and DY125-14-E-02
文摘The spatial and temporal variability and size fractionation of chlorophyll a (Chl a) were investigated in the tropical and subtropical Pacific Ocean during four survey cruises from 2005 to 2009.The surface Chl a (S-Chl a) concentration ranged from 0.002 to 0.497 mg/m3 and was obviously higher in the eastern Pacific than in the western and central Pacific.The vertical distribution of Chl a displayed a single peak pattern,and the maximum Chl a layer (MCL) was observed at a shallower depth in the eastern Pacific than in the western Pacific.All three size fractions of Chl a measurements in the surface water showed a similar distribution to total Chl a and were found in higher concentrations in the eastern Pacific than in the western and central Pacific.Picoplankton dominated the phytoplankton in the surveyed tropical and subtropical Pacific Ocean.Furthermore,pico-Chl a (0.2-2 μm) accounted for a larger percentage of the total Chl a in the central Pacific than it did in the western Pacific and eastern Pacific.In the western Pacific,there seemed to be a latitudinal variability in the phytoplankton community composition where small-sized phytoplankton (<2 μm) were more dominant in the tropical than in the subtropical western Pacific.The spatial and temporal variability and size fractionation of Chl a were controlled by hydrological and chemical characteristics and climate events,such as El Ni(n)o and La Ni(n)a.
基金Project supported by the President Foundation of the Chinese Academy of Sciences the Laboratory of Material Cycling in Pedosphere, the Chinese Academy of Sciences.
文摘Two series of soil subsamples, by spiking copper (Cu), lead (Pb), zinc (Zn) and cadmium (Cd) in an orthogonal design, were prepared using red soil and brown soil, respectively. The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types, but also on metal loading quantity as well as on interactions among metals in soil. Lead and Cu in red soil appeared mostly in weakly specifically adsorbed (WSA), Fe and Mn oxides bound (OX), and residual (RES) fractions. Zinc existed in all fractions except organic bound one, and Cd was major in water soluble plus exchangeable (SE) one. Different from the results of red soil, Pb and Cu was present in brown soil in all fractions except organic one, but over 75% of Zn and 90% of Cd existed only in SE fraction. Meanwhile, SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher. It is in agreement with low cation exchange capacity and large amounts of metal oxides included in red soil. Metal fractions in soil, especially for water soluble plus exchangeable one, were obviously influenced by other coexisting metals. The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil, which suggest that metal availability be easily affected by their total amounts spiked in red soil. In addition, more metals in red soil were extracted with 0.20 mol L-1 NH4Cl (pH 5.40) than that with 1.0 mol L-1 Mg(NO3)2 (pH 7.0), but the reverse happened in brown soil, implicating significantly different mechanisms of metal desorption from red soil and brown soil.