期刊文献+
共找到30,481篇文章
< 1 2 250 >
每页显示 20 50 100
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
1
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
2
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
3
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 explosive load explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
下载PDF
Anti-explosion performance and dynamic response of an innovative multi-layer composite explosion containment vessel
4
作者 Zhen Wang Heng Chen +3 位作者 Qi Yuan Wenbin Gu Xingbo Xie Hongwei Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期105-121,共17页
An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing... An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance. 展开更多
关键词 explosive container Honeycomb-fiber cloth ANTI-explosion Aluminum honeycomb core COMPOSITE
下载PDF
Characteristics and close-range exploration methods of near- Earth asteroid 2016HO_(3)
5
作者 He Zhang Fei Li +3 位作者 Linzhi Meng Fuming Zeng Xiaoyu Jia Yu’ang Liu 《Astronomical Techniques and Instruments》 CSCD 2024年第1期42-51,共10页
The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.Thi... The characteristics of asteroids are vital parameters for planning asteroid exploration missions.These characteristics have been explored in close range for some typical asteroids,and are summarized in the article.This allows estimates of the characteristics of asteroid 2016HO_(3),the target of the first Chinese asteroid exploration mission,Tianwen 2.We obtain 80 characteristic parameters in 9 categories and analyze their impacts on the mission.By comparing three close-range exploration modes,we provide advantages and disadvantages of each,and propose suitable methods for the exploration of 2016HO_(3).Owing to the weak gravity and small size of 2016HO_(3),a combination of multiple hovering positions and active orbiting is recommended for scientific exploration. 展开更多
关键词 Near-Earth asteroid 2016HO_(3) Tianwen 2 close-range exploration CHARACTERISTICS
下载PDF
Explosion damage effects of aviation kerosene storage tank under strong ignition
6
作者 Shixiang Song Cheng Wang +1 位作者 Boyang Qiao Gongtian Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the... In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes. 展开更多
关键词 Aviation kerosene Storage tank Internal explosion Shock wave FIREBALL
下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
7
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics explosion resistance
下载PDF
Analysis of explosion wave interactions and rock breaking effects during dual initiation
8
作者 Renshu Yang Jinjing Zuo +3 位作者 Liwei Ma Yong Zhao Zhen Liu Quanmin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1788-1798,共11页
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie... In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively. 展开更多
关键词 BLASTING shock wave collision high-speed schlieren system crack fracture characteristic explosion wave
下载PDF
Study on theoretical model for electrical explosion resistivity of Al/Ni reactive multilayer foil
9
作者 Zehao Wang Tao Wang +2 位作者 Pengfei Xue Mingyu Li Qingxuan Zeng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期348-356,共9页
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ... Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones. 展开更多
关键词 Al/Ni reactive multilayer foil Electrical explosion Resistivity model Phase transition CALCULATION
下载PDF
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
10
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric Theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic Structures Dark Energy Supernova explosion Cyclic Universe
下载PDF
Explosion characteristics of aluminum-based activated fuels containing fluorine 被引量:2
11
作者 Jin-tao Xu Lei Huang +4 位作者 Hai-peng Jiang Tian-jiao Zhang Feng-qi Zhao Jian-kan Zhang Wei Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期34-43,共10页
Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors... Measuring the dust explosion characteristics of aluminum-based activated fuels was a prerequisite for developing effective prevention and control measures.In this paper,ignition sensitivity,flame propagation behaviors and explosion severity of aluminum/polytetrafluoroethylene(Al/PTFE)compositions including 2 PT(2.80 wt.%F),4 PT(7.18 wt.%F)and 8 PT(11.90 wt.%F)were studied.When the content of F increased from 2.80 wt.%to 11.90 wt.%,the minimum explosive concentration MEC decreased from380 g/m^(3)to 140 g/m^(3),due to the dual effects of increased internal active aluminum and enhanced reactivity.The average flame propagation velocities increased as the percentage of F increased.The maximum explosion pressure Pmof 500 g/m3aluminum-based activated fuels increased from 247 k Pa to299 kPa.Scanning electron microscopy demonstrated that with the increase of PTFE content,the reaction was more complete.On this basis,the explosion mechanism of aluminum-based activated fuels was revealed. 展开更多
关键词 Aluminum-based activated fuels Ignition sensitivity Flame propagation explosion severity explosion mechanism
下载PDF
Modification of SDOF model for reinforced concrete beams under close-in explosion 被引量:1
12
作者 Wei Wei Yu-lei Zhang +2 位作者 Jian-jun Su Yan Liu Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期162-186,共25页
In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculatio... In this paper,a modified single-degree-of-freedom(SDOF)model of reinforced concrete(RC)beams under close-in explosion is proposed by developing the specific impulse equivalent method and flexural resistance calculation method.The equivalent uniform specific impulse was obtained based on the local conservation of momentum and global conservation of kinetic energy.Additionally,the influence of load uniformity,boundary condition and complex material behaviors(e.g.strain rate effect,hardening/softening and hoop-confined effect)was considered in the resistance calculation process by establishing a novel relationship between external force,bending moment,curvature and deflection successively.The accuracy of the proposed model was verified by carrying out field explosion tests on four RC beams with the scaled distances of 0.5 m/kg~(1/3)and 0.75 m/kg~(1/3).The test data in other literatures were also used for validation.As a result,the equivalent load implies that the blast load near the mid-span of beams would contribute more to the maximum displacement,which was also observed in the tests.Moreover,both the resistance model and test results declare that when the blast load becomes more concentrated,the ultimate resistance would become lower,and the compressive concrete would be more prone to softening and crushing.Finally,based on the modified SDOF model,the calculated maximum displacements agreed well with the test data in this paper and other literatures.This work fully proves the rationality of the modified SDOF method,which will contribute to a more accurate damage assessment of RC structures under close-in explosion. 展开更多
关键词 SDOF model Close-in explosion Specific impulse equivalent method Flexural resistance
下载PDF
Experimental study of polyurea-coated fiber-reinforced cement boards under gas explosions 被引量:1
13
作者 Meng Gu Xiao-dong Ling +3 位作者 An-feng Yu Guo-xin Chen Hao-zhe Wang Han-xiang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期201-213,共13页
Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea w... Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates. 展开更多
关键词 POLYUREA Fiber-reinforced cement board Gas explosion Failure criterion Glass transition
下载PDF
Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO_(2) Explosion
14
作者 Yun Lei 《Fluid Dynamics & Materials Processing》 EI 2023年第12期3021-3032,共12页
The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry.A possible w... The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry.A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide.In this work,the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed.Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is formed around the blasting hole.The radius of the sec-ondary expansion zone caused by the exploding gas is 2.0 m,and the extension limit of the explosion fracture is 2.3 m.The gas phase change explosion is influenced by the coal roadway driving face,the gas content index and the analytical index of coal shavings.Experiments conducted for comparison also lead to the conclusion that the initial gas emission is increased by 3.7 times from the 100-meter borehole in the original coal mass after coalbed gas explosion anti-reflection. 展开更多
关键词 Low-permeability gas-rich carbon dioxide ANTI-REFLECTION gas explosion
下载PDF
Satellite breakup behaviors and model under the hypervelocity impact and explosion:A review
15
作者 Si-yuan Ren Zi-zheng Gong +5 位作者 Qiang Wu Guang-ming Song Qing-ming Zhang Pin-liang Zhang Chuan Chen Yan Cao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期284-307,共24页
The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to tr... The primary causes of satellite breakups are hypervelocity impact and explosion,the research on satellite breakup can be used not only to evaluate the influence of breakup event on the space environment,but also to trace whether the satellite has been deliberately attacked.It is of great significance in both civil and military aspects.The study of satellite breakup behaviors and model is reviewed to summarize the research progress and insufficiency in recent decades,including the satellite breakup experiment,measurement and characterization of fragments,distribution characteristics of breakup fragments,satellite breakup model,etc.The classical studies are introduced in detail,and the limitations of the current research are pointed out.According to the current research results,the contemporary challenges and future directions for satellite breakup study are presented.The research on satellite breakup is developing in two directions:the miniaturization of satellite size and the complexity of satellite component.The study on satellite breakup needs to be explored and deepened on improving the experimental launch speed,expanding the model application range and breakup revealing the results under combined effect of impact and explosion. 展开更多
关键词 Satellite breakup Space environment Distribution characteristics Hypervelocity impact explosion
下载PDF
Understanding the boundary and mechanism of gas-induced explosion for lithium-ion cells:Experimental and theoretical analysis
16
作者 Tongxin Shan Xiaoqing Zhu Zhenpo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期546-558,I0012,共14页
Thermal runaway(TR)of lithium-ion(Li-ion)batteries(LIBs)involves multiple forms of hazards,such as gas venting/jetting,fire,or even explosion.Explosion,as the most extreme case,is caused by the generated flammable gas... Thermal runaway(TR)of lithium-ion(Li-ion)batteries(LIBs)involves multiple forms of hazards,such as gas venting/jetting,fire,or even explosion.Explosion,as the most extreme case,is caused by the generated flammable gases,and a deflagration to detonation transition(DDT)may occur in this process.Here,overheat-to-TR tests and the corresponding outgas-induced explosion tests were conducted on 42 Ah Li-ion cells with Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O2cathode.The sum of CO_(2),H_(2),C_(2)H_(4),CO,and CH4accounted for more than 90%of the gases.Lower/upper explosion limits(LEL/UEL),laminar flame speed,and ideal stable detonation pressure were calculated to interpret the explosion characteristics and boundary.It turned out that shockwave was easily to be compressed and accelerated under higher state of charge(SOC)conditions.Thus,Li-ion cells explosion may evolve into unstable detonation in encapsulated battery pack and its evolution mechanism was explained,which provides a new idea for explosion-proof design of LIBs system.Additionally,a comprehensive assessment method was developed to intuitively characterize TR hazards.Severity of explosion presented an upward trend with the increase of SOC while the sensitivity was not the same.This study provides a further anatomy of TR,which is instructive to the safety of power battery systems. 展开更多
关键词 Lithium-ion battery Thermal runaway Gas explosion Evolution mechanism Safety
下载PDF
A nanoparticle formation model considering layered motion based on an electrical explosion experiment with AI wires
17
作者 张江波 高红旭 +3 位作者 肖飞 刘威 梁泰鑫 马中亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期135-146,共12页
To study the evolution of nanoparticles during Al wire electrical explosion,a nanoparticle formation model that considered layered motion was developed,and an experimental system was set up to carry out electrical exp... To study the evolution of nanoparticles during Al wire electrical explosion,a nanoparticle formation model that considered layered motion was developed,and an experimental system was set up to carry out electrical explosion experiments using 0.1 mm and 0.2 mm Al wires.The characteristic parameters and evolution process during the formation of nanoparticles were calculated and analyzed.The results show that the maximum velocities of the innermost and outermost layers are about 1200 m·s-1and 1600 m·s-1,and the velocity of the middle layer is about 1400 m·s-1,respectively.Most of the nanoparticles are formed in the temperature range of2600 K-2500 K.The characteristic temperature for the formation of Al nanoparticles is~2520K,which is also the characteristic temperature of other parameters.The size distribution range of the formed nanoparticles is 18 to 110 nm,and most of them are around 22 nm.The variation of saturated vapor pressure determines the temperature distribution range of particle nucleation.There is a minimum critical diameter of particles(~25 nm);particles smaller than the critical diameter can grow into larger particles during surface growth.Particle motion has an effect on the surface growth and aggregation process of particles,and also on the distribution area of larger-diameter particles.The simulation results are in good agreement with the experiments.We provide a method to estimate the size and distribution of nanoparticles,which is of great significance to understand the formation process of particles during the evolution of wire electrical explosion. 展开更多
关键词 electrical explosion NANOPARTICLES numerical model layered motion aluminum wire
下载PDF
Lead spall velocity of fragments of ultra-high-performance concrete slabs under partially embedded cylindrical charge-induced explosion
18
作者 Yi Fan Li Chen +2 位作者 Heng-bo Xiang Qin Fang Fang-yu Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期50-59,共10页
When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to n... When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to nearby personnel and equipment. To study the lead fragment velocity of ultra-high-performance concrete(UHPC), partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge. The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process. The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s, which are largely identical to that for a normal-strength concrete(NSC) slab. In addition, the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction. An empirical Eq. for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data. 展开更多
关键词 Ultra-high-performance concrete Reinforced concrete slabs explosion Fragment velocity Blast resistance
下载PDF
The damage to model concrete gravity dams subjected to water explosions
19
作者 Shang Ma Ye-qing Chen +3 位作者 Zhen-qing Wang Shu-tao Li Qing Zhu Long-ming Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期119-137,共19页
Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent... Over the past century,the safety of dams has gradually attracted attention from all parties.Research on the dynamic response and damage evolution of dams under extreme loads is the basis of dam safety issues.In recent decades,scholars have studied the responses of dams under earthquake loads,but there is still much room for improvement in experimental and theoretical research on small probability loads such as explosions.In this paper,a 50-m-high concrete gravity dam is used as a prototype dam,and a water explosion model test of a 2.5-m-high concrete gravity dam is designed.The water pressure and the acceleration response of the dam body in the test are analysed.The pressure characteristics and dynamic response of the dam body are assessed.Taking the dam damage test as an example,a numerical model of concrete gravity dam damage is established,and the damage evolution of the dam body is analysed.By combining experiments and numerical simulations,the damage characteristics of the dam body under the action of different charge water explosions are clarified.The integrity of the dam body is well maintained under the action of a small-quantity water explosion,and the dynamic response of the dam body is mainly caused by the shock wave.Both the shock wave and the bubble pulsation cause the dam body to accelerate,and the peak acceleration of the dam body under the action of the bubble pulsation is only one percent of the peak acceleration of the dam body under the action of the shock wave.When subjected to explosions in large quantities of water,the dam body is seriously damaged.Under the action of a shock wave,the dam body produces a secondary acceleration response,which is generated by an internal interaction after the dam body is damaged.The damage evolution process of the dam body under the action of a large-scale water explosion is analysed,and it is found that the shock wave pressure of the water explosion causes local damage to the dam body facing the explosion.After the peak value of the shock wave,the impulse continues to act on the dam body,causing cumulative damage and damage inside the dam body. 展开更多
关键词 Underwater explosion Concrete gravity dam Model test Damage evolution
下载PDF
The Study on Bamboo Microfibers Isolated by Steam Explosion and Their Comprehensive Properties
20
作者 Qiushi Li Ronggang Luo +9 位作者 Yu Chen Jinhui Xiong Bei Qiao Xijuan Chai Linkun Xie Juan Wang Lianpeng Zhang Siqun Wang Guanben Du Kaimeng Xu 《Journal of Renewable Materials》 SCIE EI 2023年第6期2809-2822,共14页
To overcome the shortage of wood resources as well as to develop novel natural fibers materials,the Chimonobambusa quadrangularis(CQ)and Qiongzhuea tumidinoda(QT)planted in Southwest China were effectively isolated by... To overcome the shortage of wood resources as well as to develop novel natural fibers materials,the Chimonobambusa quadrangularis(CQ)and Qiongzhuea tumidinoda(QT)planted in Southwest China were effectively isolated by the steam explosion(SE).The fine and uniform bamboo microfibers derived from CQ and QT were obtained,and their smallest average widths were 12.62μm and 16.05μm,respectively.The effects of steam explosion on the micro-morphology,chemical composition,thermal stability,crystallinity,surface wettability,and mechanical properties of bamboo microfibers were comprehensively investigated.The results showed that the relative content of cellulose in bamboo microfibers increased but the hemicellulose and lignin contents decreased after SE.The degrees of crystallinity for CQ and QT increased from 40.49%and 39.46%to 68.90%and 55.78%,respectively.The thermal stability and surface hydrophilicity were also improved.The CQ microfibers had a maximum decomposition temperature of 2.79°C,a tensile strength of 58.54 MPa,an elongation at break of 0.6%,and a water contact angle of 2.7°higher than those of the QT microfibers. 展开更多
关键词 Microfiber properties BAMBOO steam explosion Chimonobambusa quadrangularis Qiongzhuea tumidinoda
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部