The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda...The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.展开更多
Glaucoma, one of the leading causes of irreversible blindness in the adult population worldwide, is a progressive optic neuropathy. Primary open angle glaucoma (POAG) is the most commonly reported type of glaucoma in ...Glaucoma, one of the leading causes of irreversible blindness in the adult population worldwide, is a progressive optic neuropathy. Primary open angle glaucoma (POAG) is the most commonly reported type of glaucoma in population based prevalence studies worldwide. Elevated intraocular pressure is a well-known major risk factor for POAG. In addition, there is growing evidence that other risk factors like age, gender, race, refractive error, heredity and systemic factors may play a role in glaucoma pathogenesis. Many studies found that high myopia has been associated with POAG, however, direct and convincing evidences are still lacking. The aim of this review is to summarize the evidences implicating high myopia as a risk factor in the pathogenesis of POAG.展开更多
The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack...The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
Objective: To explore water soluble metabolite features of brain tumor specimens with HRMAS-^1HMRS and its potential clinical value. Methods: There were thirty cases of pathologically proven brain tumor, including 6...Objective: To explore water soluble metabolite features of brain tumor specimens with HRMAS-^1HMRS and its potential clinical value. Methods: There were thirty cases of pathologically proven brain tumor, including 6 Ⅰ-Ⅱ grade astrocytomas, 7 Ⅲ grade anaplastic astrocytomas, 10 IV grade glioblastomas and 7 meningiomas. Used Varian Company 600 MHz spectrometer with the Nano-probe for acquisition HRMASJHMRS, which was postprocessed with jMRUI 3.2 version software. These metabolic probability and their ratios to Cr were summed. Results: (1) HRMAS-^1HMRS could resolve NAA, PCr/Cr, GPC ± PCho ± Cho, Glu/GIn, Gly, Tau, Ala, Lac, ml and so on. All samples showed Lac, 6 samples showed unknown single peak at 3.72 ppm or 3.90 ppm. (2) The mean Cho/Cr of 6 Ⅰ-ⅡI grade astrocytomas was 2.42 ± 1.01 (P = 0.003, compared with glioblastoma). The mean Cho/Cr of 7 anaplastic astrocytomas was 3.48 ± 0.59 (P = 0.01, compared with glioblastoma). The Cho/Cr of 10 glioblastomas broadly ranged from 0.9 to 11.3 (mean 5.40 ± 1.23). From Ⅰ-Ⅱ grade astrocytoma to glioblastoma, Ala/Cr, Tau/Cr and Gly/Cr trends were increased; the mean Ala/Cr of glioma was 0.31 ± 0.13. (3) Meningiomas showed higher Ala and Cho. Their Cr was lower than that of gliomas. 4/7 cases had no NAA, 3/7 patients had lower NAA. Mean Cho/Cr was 3.56 ± 1.01, Ala/Cr was 0.53 ±0.28 (P = 0.006, compared with glioma). Conclusion: HRMAS-^1HMRS can show further details in vivo MRS, resolve in vivo spectroscopic metabolite of Cho compound and differentiate the extent of benign and malignant glioma. With the increase in the malignant degree of gliomas, Cho, ml, Ala, Tau and Gly will increase. HRMAS-^1HMRS is the only method of isotropic spectroscopy for pathological specimens.展开更多
Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorie...Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.展开更多
AIM: To assess the safety, efficacy and predictability of the AcrySof phakic angle-supported intraocular lens (IOL) (Alcon Inc., U.S.A.) for correction of high-to-extremely high myopia in adults. METHODS: In this pros...AIM: To assess the safety, efficacy and predictability of the AcrySof phakic angle-supported intraocular lens (IOL) (Alcon Inc., U.S.A.) for correction of high-to-extremely high myopia in adults. METHODS: In this prospective study performed in Tianjin Medical University Eye Center & College of Optometry, Tianjin, China, 25 eyes of 13 patients were implanted with AcrySof phakic angle-supported IOLs and followed for 1 year postoperatively. Preoperative manifest refractive sphere was (-12.08 +/- 2.44) diopters (D) and cylinder was (-1.35 +/- 0.62)D. Visual acuity, predictability and stability of manifest refraction spherical equivalent (MRSE), adverse events, and endothelial cell density were analyzed during 1-year of follow-up. RESULTS: After 1 year of follow-up, no eyes lost 1 line (best spectacle-corrected visual acuity)BSCVA; an uncorrected visual acuity (UCVA) of 20/20 or better was achieved in 60% of eyes; 100% had an UCVA of 20/40 or better; a BSCVA of 20/30 or better was achieved by 100% of eyes; 84% had a BSCVA of 20/20 or better. The overall mean percentage change in endothelial cell density 1 year after surgery was (-0.27 +/- 3.60)%. Two eyes (8%) had increased intraocular pressure (IOP) on the day of surgery. No pupil ovalization, pupillary block, or retinal detachment events were observed. CONCLUSION: After 1 year of follow-up, the implantation of AcrySof phakic angle-supported IOL is proved to be safe, effective and predictable with minimal complications in patients with high-to-extremely high myopia. Due to the limitation of visiting time, long-term of clinical investigation is necessary to verify the safety and efficacy of this IOL.展开更多
A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simu...A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.展开更多
Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft whil...Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective.展开更多
We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodic...We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodically arranged circular patches, which converts the slow-wave mode into the fast-wave region for radiation. The proposed LWA is designed, fabricated, and tested. The simulated results imply that the proposed LWA not only achieves a high radiation efficiency of about 81.4%, and a high scanning rate of 12.12, but also has a large scanning angle of 176° over a narrow operation bandwidth of 8.3-9.6 GHz(for |S_(11)| <-10 dB). In addition, the simulated average gain of the LWA can reach as high as 10.9 d Bi. The measured scanning angle range is 175° in the operation band of 8.2-9.6 GHz, and the measured average gain is 10.6 dBi. The experimental results are consistent with the simulation, validating its performance. An antenna with high radiation efficiency, wide scanning angle range, and high scanning rate has great potential for application in radar and wireless communication systems.展开更多
This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to me...This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to measure the shape and deformation of the skin at the biceps brachii of a volunteer in vivo during arm wrestling.We observed the banding phenomenon of arm skin strain during muscle contraction and developed a model to evaluate the moment provided by the biceps brachii.According to this model,the strain field of the area of interest on the skin was measured,and the forearm angles most favorable and unfavorable to the work of the biceps brachii were analyzed.This study demonstrates the considerable potential of applying DIC and its extension method to the in vivo measurement of human skin and facilitates the use of the in vivo measurement of skin deformation in various sports in the future.展开更多
In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different openin...In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.展开更多
The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the contro...The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket.展开更多
The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are...The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–Vxx and I–Vxy).It is found that the I–Vxx curve diverges from linearity at a high driving current,while the I–Vxy curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force.展开更多
The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity...The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.展开更多
基金The project supported by the National Natural Science Foundation of China(10172017)Aeronautical Science Foundation of China(02A51048)Foundation of National Key Laboratory of Aerodynamic Design and Research(51462020504HK0101)
文摘The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.
文摘Glaucoma, one of the leading causes of irreversible blindness in the adult population worldwide, is a progressive optic neuropathy. Primary open angle glaucoma (POAG) is the most commonly reported type of glaucoma in population based prevalence studies worldwide. Elevated intraocular pressure is a well-known major risk factor for POAG. In addition, there is growing evidence that other risk factors like age, gender, race, refractive error, heredity and systemic factors may play a role in glaucoma pathogenesis. Many studies found that high myopia has been associated with POAG, however, direct and convincing evidences are still lacking. The aim of this review is to summarize the evidences implicating high myopia as a risk factor in the pathogenesis of POAG.
文摘The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
文摘Objective: To explore water soluble metabolite features of brain tumor specimens with HRMAS-^1HMRS and its potential clinical value. Methods: There were thirty cases of pathologically proven brain tumor, including 6 Ⅰ-Ⅱ grade astrocytomas, 7 Ⅲ grade anaplastic astrocytomas, 10 IV grade glioblastomas and 7 meningiomas. Used Varian Company 600 MHz spectrometer with the Nano-probe for acquisition HRMASJHMRS, which was postprocessed with jMRUI 3.2 version software. These metabolic probability and their ratios to Cr were summed. Results: (1) HRMAS-^1HMRS could resolve NAA, PCr/Cr, GPC ± PCho ± Cho, Glu/GIn, Gly, Tau, Ala, Lac, ml and so on. All samples showed Lac, 6 samples showed unknown single peak at 3.72 ppm or 3.90 ppm. (2) The mean Cho/Cr of 6 Ⅰ-ⅡI grade astrocytomas was 2.42 ± 1.01 (P = 0.003, compared with glioblastoma). The mean Cho/Cr of 7 anaplastic astrocytomas was 3.48 ± 0.59 (P = 0.01, compared with glioblastoma). The Cho/Cr of 10 glioblastomas broadly ranged from 0.9 to 11.3 (mean 5.40 ± 1.23). From Ⅰ-Ⅱ grade astrocytoma to glioblastoma, Ala/Cr, Tau/Cr and Gly/Cr trends were increased; the mean Ala/Cr of glioma was 0.31 ± 0.13. (3) Meningiomas showed higher Ala and Cho. Their Cr was lower than that of gliomas. 4/7 cases had no NAA, 3/7 patients had lower NAA. Mean Cho/Cr was 3.56 ± 1.01, Ala/Cr was 0.53 ±0.28 (P = 0.006, compared with glioma). Conclusion: HRMAS-^1HMRS can show further details in vivo MRS, resolve in vivo spectroscopic metabolite of Cho compound and differentiate the extent of benign and malignant glioma. With the increase in the malignant degree of gliomas, Cho, ml, Ala, Tau and Gly will increase. HRMAS-^1HMRS is the only method of isotropic spectroscopy for pathological specimens.
文摘Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.
文摘AIM: To assess the safety, efficacy and predictability of the AcrySof phakic angle-supported intraocular lens (IOL) (Alcon Inc., U.S.A.) for correction of high-to-extremely high myopia in adults. METHODS: In this prospective study performed in Tianjin Medical University Eye Center & College of Optometry, Tianjin, China, 25 eyes of 13 patients were implanted with AcrySof phakic angle-supported IOLs and followed for 1 year postoperatively. Preoperative manifest refractive sphere was (-12.08 +/- 2.44) diopters (D) and cylinder was (-1.35 +/- 0.62)D. Visual acuity, predictability and stability of manifest refraction spherical equivalent (MRSE), adverse events, and endothelial cell density were analyzed during 1-year of follow-up. RESULTS: After 1 year of follow-up, no eyes lost 1 line (best spectacle-corrected visual acuity)BSCVA; an uncorrected visual acuity (UCVA) of 20/20 or better was achieved in 60% of eyes; 100% had an UCVA of 20/40 or better; a BSCVA of 20/30 or better was achieved by 100% of eyes; 84% had a BSCVA of 20/20 or better. The overall mean percentage change in endothelial cell density 1 year after surgery was (-0.27 +/- 3.60)%. Two eyes (8%) had increased intraocular pressure (IOP) on the day of surgery. No pupil ovalization, pupillary block, or retinal detachment events were observed. CONCLUSION: After 1 year of follow-up, the implantation of AcrySof phakic angle-supported IOL is proved to be safe, effective and predictable with minimal complications in patients with high-to-extremely high myopia. Due to the limitation of visiting time, long-term of clinical investigation is necessary to verify the safety and efficacy of this IOL.
基金Project supported by the Foundation of Aeronautical Science (No.99A53001)
文摘A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, A is negativee, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However, after a critical angle of attack is reached the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.
文摘Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508)the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-350, 20200108, 20210110, and 2020022)the Postdoctoral Innovative Talents Support Program of China (Grant Nos. BX20180375, 2019M653960, and 2021T140111)。
文摘We propose a single-beam leaky-wave antenna(LWA) with a wide-scanning angle and a high-scanning rate based on spoof surface plasmon polariton(SSPP) in this paper. The SSPP transmission line(TL) is etched with periodically arranged circular patches, which converts the slow-wave mode into the fast-wave region for radiation. The proposed LWA is designed, fabricated, and tested. The simulated results imply that the proposed LWA not only achieves a high radiation efficiency of about 81.4%, and a high scanning rate of 12.12, but also has a large scanning angle of 176° over a narrow operation bandwidth of 8.3-9.6 GHz(for |S_(11)| <-10 dB). In addition, the simulated average gain of the LWA can reach as high as 10.9 d Bi. The measured scanning angle range is 175° in the operation band of 8.2-9.6 GHz, and the measured average gain is 10.6 dBi. The experimental results are consistent with the simulation, validating its performance. An antenna with high radiation efficiency, wide scanning angle range, and high scanning rate has great potential for application in radar and wireless communication systems.
基金This study was supported by the National Natural Science Foun-dation of China(NSFC)(No.11902074).
文摘This study analyzes the function of different muscles during arm wrestling and proposes a method to analyze the optimal forearm angle for professional arm wrestlers.We built a professional arm-wrestling platform to measure the shape and deformation of the skin at the biceps brachii of a volunteer in vivo during arm wrestling.We observed the banding phenomenon of arm skin strain during muscle contraction and developed a model to evaluate the moment provided by the biceps brachii.According to this model,the strain field of the area of interest on the skin was measured,and the forearm angles most favorable and unfavorable to the work of the biceps brachii were analyzed.This study demonstrates the considerable potential of applying DIC and its extension method to the in vivo measurement of human skin and facilitates the use of the in vivo measurement of skin deformation in various sports in the future.
基金the New Type of Non-Adhesion Braking-Aerodynamics Braking,Ministry of Railw ays,China(No.2860235018)the Fundamental Research Funds for the Central Universities,China(No.2860219022)
文摘In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.
基金Supported by National Natural Science Foundation-Guangdong Collaborative Fund Key Program(Grant No.U12012081)
文摘The progressive cutting based on auxiliary paths is an effective machining method for the material accumulating region inside the mould pocket. But the method is commonly based on the radial depth of cut as the control parameter, further more there is no more appropriate adjustment and control approach. The end-users often fall to set the parameter correctly, which leads to excessive tool load in the process of actual machining. In order to make more reasonable control of the machining load and toolpath, an engagement angle modeling method for multiplecircle continuous machining is presented. The distribution mode of multiple circles, dynamic changing process of engagement angle, extreme and average value of engage- ment angle are carefully considered. Based on the engagement angle model, numerous application techniques for mould pocket machining are presented, involving the calculation of the milling force in multiple-circle continuous machining, and rough and finish machining path planning and load control for the material accumulating region inside the pocket, and other aspects. Simulation and actual machining experiments show that the engagement angle modeling method for multiple-circle continuous machining is correct and reliable, and the related numerous application techniques for pocket machining are feasible and effective. The proposed research contributes to the analysis and control tool load effectively and tool-path planning reasonably for the material accumulating region inside the mould pocket.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61501222,61371036,and 61571219)the School Scientific Research Fund of Nanjing Institute of Technology,China(Grant Nos.YKJ201418)
文摘The critical current density behaviors across a bicrystal grain boundary(GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated.There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field:(i) the GB plane area determines the current carrying cross section;(ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force.Furthermore,the vortex motion in a bicrystal GB is studied by investigating transverse(Hall) and longitudinal current–voltage characteristics(I–Vxx and I–Vxy).It is found that the I–Vxx curve diverges from linearity at a high driving current,while the I–Vxy curve keeps nearly linear,which indicates the vortices inside the GB break out of the GB by Lorentz force.
文摘The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.