In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations we...In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ...Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.展开更多
This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associat...This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associated fatty liver disease.We provide supplementary insights to their research,highlighting the broader systemic implications of GLP-1RAs,synthesizing the current understanding of their mechanisms and the trajectory of research in this field.GLP-1RAs are revolutionizing the treatment of type 2 diabetes mellitus and beyond.Beyond glycemic control,GLP-1RAs demonstrate cardiovascular and renal protective effects,offering potential in managing diabetic kidney disease alongside renin–angiotensin–aldosterone system inhibitors.Their role in bone metabolism hints at benefits for diabetic osteoporosis,while the neuroprotective properties of GLP-1RAs show promise in Alzheimer's disease treatment by modulating neuronal insulin signaling.Additionally,they improve hormonal and metabolic profiles in polycystic ovary syndrome.This editorial highlights the multifaceted mechanisms of GLP-1RAs,emphasizing the need for ongoing research to fully realize their therapeutic potential across a range of multisystemic diseases.展开更多
The population of non-alcoholic fatty liver disease(NAFLD)patients along with relevant advanced liver disease is projected to continue growing,because currently no medications are approved for treatment.Fecal microbio...The population of non-alcoholic fatty liver disease(NAFLD)patients along with relevant advanced liver disease is projected to continue growing,because currently no medications are approved for treatment.Fecal microbiota transplantation(FMT)is believed a novel and promising therapeutic approach based on the concept of the gut-liver axis in liver disease.There has been an increase in the number of pre-clinical and clinical studies evaluating FMT in NAFLD treatment,however,existing findings diverge on its effects.Herein,we briefly summarized the mechanism of FMT for NAFLD treatment,reviewed randomized controlled trials for evaluating its efficacy in NAFLD,and proposed the prospect of future trials on FMT.展开更多
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg...This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.展开更多
With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic ...With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response str...With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response strategies of underground coal fires is of great significance to accelerate the green prevention and control of coal fires,energy conservation and emission reduction.In this paper,we summarized and sorted out the research status of underground coal fires,focused on the theoretical and technical issues such as underground coal fire combustion mechanism,multiphysics coupling effect of coal fire combustion,fire prevention and extinguishing technology for underground coal fires,and beneficial utilization technology,and described the latest research progress of the prevention and control for underground coal fire hazards.Finally,the key research problems in the field of underground coal fire hazards prevention and control were proposed in the direction of the basic theory,technology research,comprehensive management and utilization,with a view to providing ideas and solutions for the management of underground coal fires.展开更多
This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensi...This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne...Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a comp...The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems.展开更多
Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform...Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.展开更多
Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects...This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.展开更多
Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data an...Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas.展开更多
基金financially supported by the National Natural Science Foundation of China(Approval No.42172168).
文摘In order to obtain liquefied products with higher yields of aromatic molecules to produce mesophase pitch,a good understanding of the relevant reaction mechanisms is required.Reactive molecular dynamics simulations were used to study the thermal reactions of pyrene,1-methylpyrene,7,8,9,10-tetrahydrobenzopyrene,and mixtures of pyrene with 1-octene,cyclohexene,or styrene.The reactant conversion rates,reaction rates,and product distributions were calculated and compared,and the mechanisms were analyzed and discussed.The results demonstrated that methyl and naphthenic structures in aromatics might improve the conversion rates of reactants in hydrogen transfer processes,but their steric hindrances prohibited the generation of high polymers.The naphthenic structures could generate more free radicals and presented a more obvious inhibition effect on the condensation of polymers compared with the methyl side chains.It was discovered that when different olefins were mixed with pyrene,1-octene primarily underwent pyrolysis reactions,whereas cyclohexene mainly underwent hydrogen transfer reactions with pyrene and styrene,mostly producing superconjugated biradicals through condensation reactions with pyrene.In the mixture systems,the olefins scattered aromatic molecules,hindering the formation of pyrene trimers and higher polymers.According to the reactive molecular dynamics simulations,styrene may enhance the yield of dimer and enable the controlled polycondensation of pyrene.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金Project(52204084)supported by the National Natural Science Foundation of ChinaProject(FRF-IDRY-GD22-002)supported by the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China+2 种基金Project(QNXM20220009)supported by the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,ChinaProjects(2022YFC2905600,2022YFC3004601)supported by the National Key R&D Program of ChinaProject(2023XAGG0061)supported by the Science,Technology&Innovation Project of Xiongan New Area,China。
文摘Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention.
基金Supported by National Natural Science Foundation of China,No.U23A20398 and No.82030007Sichuan Science and Technology Program,No.2022YFS0578.
文摘This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani,which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists(GLP-1RAs)for metabolic dysfunction-associated fatty liver disease.We provide supplementary insights to their research,highlighting the broader systemic implications of GLP-1RAs,synthesizing the current understanding of their mechanisms and the trajectory of research in this field.GLP-1RAs are revolutionizing the treatment of type 2 diabetes mellitus and beyond.Beyond glycemic control,GLP-1RAs demonstrate cardiovascular and renal protective effects,offering potential in managing diabetic kidney disease alongside renin–angiotensin–aldosterone system inhibitors.Their role in bone metabolism hints at benefits for diabetic osteoporosis,while the neuroprotective properties of GLP-1RAs show promise in Alzheimer's disease treatment by modulating neuronal insulin signaling.Additionally,they improve hormonal and metabolic profiles in polycystic ovary syndrome.This editorial highlights the multifaceted mechanisms of GLP-1RAs,emphasizing the need for ongoing research to fully realize their therapeutic potential across a range of multisystemic diseases.
基金the National Natural Science Foundation of China,No.82104525the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,No.21KJB360009Health Commission of Zhejiang Province Scientific Research Foundation,No.2024KY247.
文摘The population of non-alcoholic fatty liver disease(NAFLD)patients along with relevant advanced liver disease is projected to continue growing,because currently no medications are approved for treatment.Fecal microbiota transplantation(FMT)is believed a novel and promising therapeutic approach based on the concept of the gut-liver axis in liver disease.There has been an increase in the number of pre-clinical and clinical studies evaluating FMT in NAFLD treatment,however,existing findings diverge on its effects.Herein,we briefly summarized the mechanism of FMT for NAFLD treatment,reviewed randomized controlled trials for evaluating its efficacy in NAFLD,and proposed the prospect of future trials on FMT.
基金supported in part by the National Key R&D Program of China under Grant 2021YFB2011300the National Natural Science Foundation of China under Grant 52075262。
文摘This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach.
基金Thanks to the Northwest Oilfield Branch,SINOPEC,for providing the seismic data.We thank Dr.Yi-Duo Liu of University of Houston,Ying-Chang Cao and Fang Hao of China University of Petroleum(East China)for their constructive suggestions of this manuscript.We also thank two anonymous reviewers for their comments that helped us to improve the manuscript.This research is jointly supported by the National Natural Science Foundation of China(No.42272155)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA14010301)+1 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.41821002)National Natural Science Foundation of China(No.41702138).
文摘With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
基金supported by the National Natural Science Foundation of China (52174229)the Natural Science Foundation of Liaoning Province (2021-KF-23-01),for which the authors are very thankful.
文摘With the large-scale mining of coal resources,the huge economic losses and environmental problems caused by underground coal fires have become increasingly prominent,and the research on the status quo and response strategies of underground coal fires is of great significance to accelerate the green prevention and control of coal fires,energy conservation and emission reduction.In this paper,we summarized and sorted out the research status of underground coal fires,focused on the theoretical and technical issues such as underground coal fire combustion mechanism,multiphysics coupling effect of coal fire combustion,fire prevention and extinguishing technology for underground coal fires,and beneficial utilization technology,and described the latest research progress of the prevention and control for underground coal fire hazards.Finally,the key research problems in the field of underground coal fire hazards prevention and control were proposed in the direction of the basic theory,technology research,comprehensive management and utilization,with a view to providing ideas and solutions for the management of underground coal fires.
基金Project(WPUKFJJ2019-19)supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining,ChinaProject(51974317)supported by the National Natural Science Foundation of China。
文摘This study is the result of long-term efforts of the authors’team to assess ground response of gob-side entry by roof cutting(GSERC)with hard main roof,aiming at scientific control for GSERC deformation.A comprehensive field measurement program was conducted to determine entry deformation,roof fracture zone,and anchor bolt(cable)loading.The results indicate that GSERC deformation presents asymmetric characteristics.The maximum convergence near roof cutting side is 458 mm during the primary use process and 1120 mm during the secondary reuse process.The entry deformation is closely associated with the primary development stage,primary use stage,and secondary reuse stage.The key block movement of roof cutting structure,a complex stress environment,and a mismatch in the supporting design scheme are the failure mechanism of GSERC.A controlling ideology for mining states,including regional and stage divisions,was proposed.Both dynamic and permanent support schemes have been implemented in the field.Engineering practice results indicate that the new support scheme can efficiently ensure long-term entry safety and could be a reliable approach for other engineering practices.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金supported in part by the National Natural Science Foundation of China(62273112,62061160371,61933001,51905115)the Science and Technology Planning Project of Guangzhou City(202201010758)+2 种基金the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205)the Open Research Fund from the Guangdong Laboratory of Artificial Intelligence and Digital Economy(Shenzhen(SZ))(GML-KF-22-27)the Korea Institute of Energy Technology Evaluation and Planning Through the Auspices of the Ministry of Trade,Industry and Energy,Republic of Korea(20213030020160)。
文摘Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy.
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
基金Supported by National Natural Science Foundation of China(Grant No.52175019)Beijing Municipal Natural Science Foundations(Grant Nos.3212009 and L222038)Beijing Municipal Key Laboratory of Space-ground Interconnection and Convergence of China.
文摘The use of non-smart materials in structural components and kinematic pairs allows for flexible assembly in practical applications and is promising for aerospace applications.However,this approach can result in a complex structure and excessive kinematic pairs,which limits its potential applications due to the difficulty in controlling and actuating the mechanism.While smart materials have been integrated into certain mechanisms,such integration is generally considered a unique design for specific cases and lacks universality.Therefore,organically combining universal mechanism design with smart materials and 4D printing technology,innovating mechanism types,and systematically exploring the interplay between structural design and morphing control remains an open research area.In this work,a novel form-controlled planar folding mechanism is proposed,which seamlessly integrates the control and actuation system with the structural components and kinematic pairs based on the combination of universal mechanism design with smart materials and 4D printing technology,while achieving self-controlled dimensional ratio adjustment under a predetermined thermal excitation.The design characteristics of the mechanism are analyzed,and the required structural design parameters for the preprogrammed design are derived using a kinematic model.Using smart materials and 4D printing technology,folding programs based on material properties and control programs based on manufacturing parameters are encoded into the form-controlled rod to achieve the preprogrammed design of the mechanism.Finally,two sets of prototype mechanisms are printed to validate the feasibility of the design,the effectiveness of the morphing control programs,and the accuracy of the theoretical analysis.This mechanism not only promotes innovation in mechanism design methods but also shows exceptional promise in satellite calibration devices and spacecraft walking systems.
基金supported by the National Natural Science Foundation of China(11927803A020414).
文摘Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
基金This work has been supported by the National Key Research and Development Program(Grant No.2017YFC0603000)which was jointly completed by the Coal Mining Research Branch of CCRI,China University of Mining and Technology(Xuzhou and Beijing),Henan Polytechnic UniversityXinji Energy Company Limited of China Coal Energy Group.This work was also supported by the National Natural Science Foundation of China(Grant No.51927807)。
文摘This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces.
基金We gratefully acknowledge the support of the National Key R&D Program of China(Grant No.2017YFC1501102)the National Nat-ural Science Foundation of China(Grant No.41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Water-induced landslides in hydropower reservoirs pose a great threat to both project operation and human life.This paper examines three large reservoirs in Sichuan Province,China.Field surveys,site monitoring data analyses and numerical simulations are used to analyze the spatial distribution and failure mechanisms of water-induced landslides in reservoir areas.First,the general rules of landslide development in the reservoir area are summarized.The first rule is that most of the landslides have rear edge elevations of 100e500 m above the normal water level of the reservoir,with volumes in the range of 106 e107 m 3.When the volume exceeds a certain amount,the number of sites at which the landscape can withstand landslides is greatly reduced.Landslide hazards mainly occur in the middle section of the reservoir and less in the annex of the dam site and the latter half of the reservoir area.The second rule is that sedimentary rocks such as sandstone are more prone to landslide hazards than other lithologies.Then,the failure mechanism of changes in the water level that reduces the stability of the slope composed of different geomaterials is analyzed by a proposed slope stability framework that considers displacement and is discussed with the monitoring results.Permeability is an essential parameter for understanding the diametrically opposed deformation behavior of landslides experiencing filling-drawdown cycles during operation.This study seeks to provide inspiration to subsequent researchers,as well as guidance to technicians,on landslide prevention and control in reservoir areas.