期刊文献+
共找到1,255篇文章
< 1 2 63 >
每页显示 20 50 100
Tensile property of Al-Si closed-cell aluminum foam 被引量:6
1
作者 尉海军 姚广春 刘宜汉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1335-1340,共6页
Al-Si closed-cell aluminum foams of different densities were prepared by molten body transitional foaming process.The tensile behavior of Al-Si closed-cell aluminum foam was studied and the influence of relative densi... Al-Si closed-cell aluminum foams of different densities were prepared by molten body transitional foaming process.The tensile behavior of Al-Si closed-cell aluminum foam was studied and the influence of relative densities on the tensile strength and elastic modulus was also researched.The results show that the fracture surfaces of Al-Si closed-cell aluminum foam display quasi-cleavage fracture consisting of brittle cleavages and ductile dimples.The tensile strength and elastic modulus are strictly affected by the relative density of Al-Si closed-cell aluminum foam.With increasing relative density,the tensile strength increases and the strain at which the peak strength is measured also increases;in addition,the elastic modulus increases with increasing relative density. 展开更多
关键词 AL-SI aluminum foam closed-celL TENSILE PROPERTY
下载PDF
Thermal properties of closed-cell aluminum foams prepared by melt foaming technology 被引量:3
2
作者 Hui WANG Xiang-yang ZHOU +2 位作者 Bo LONG Juan YANG Hong-zhuan LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3147-3153,共7页
Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional ... Closed-cell aluminum foam has incomparable advantages over other traditional materials for thermal insulation and heatpreservation because of small thermal conductivity coefficient. Spherical bubble three-dimensional model of aluminum foam is builtto deduce the relationship among pore wall thickness, porosity and average pore size. Non-uniform closed-cell foam aluminummodel with different structural parameters and random pore distribution is established based on the relationship via C programminglanguage. And the temperature distribution is analyzed with ANSYS software. Results indicate that thermal conductivity increaseswith the reducing of porosity. For the aluminum foam with the same porosity, different pore distributions result in different thermalconductivities. The temperature distribution in aluminum foam is non-uniform, which is closely related with the pore size anddistribution. The pores which extend or distribute along the direction perpendicular to heat flow strengthen obstructive capability forheat flow. When pores connect along the direction perpendicular to heat flow, a “wall of high thermal resistance” appears to declinethe thermal conductivity rapidly, which shows that only porosity cannot completely determine effective thermal conductivity ofclosed-cell aluminum foam. 展开更多
关键词 closed-cell aluminum foam thermal conductivity POROSITY pore distribution temperature distribution
下载PDF
Biaxial mechanical behavior of closed-cell aluminum foam under combined shear-compression loading 被引量:3
3
作者 Zhi-bin LI Xue-yan LI Yu-xuan ZHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期41-50,共10页
Combined shear-compression tests and simulations were performed on a closed-cell aluminum foam over a wide range of loading angles in order to probe their yield behaviors under biaxial loading conditions.Combined shea... Combined shear-compression tests and simulations were performed on a closed-cell aluminum foam over a wide range of loading angles in order to probe their yield behaviors under biaxial loading conditions.Combined shear-compression tests were carried out by using a pair of cylindrical bars with beveled ends.The yield surfaces were experimentally measured and compared with various theoretical yield surface models.The cellular structures of closed-cell aluminum foams were modeled as tetrakaidecahedrons and their biaxial crushing behaviors were simulated by the finite element method.The results show that,yield initiates from the stress-concentrated corners in the specimens under combined shear-compression loading and the stress distribution is no longer uniform at the specimen/bar interfaces.In the range of cell sizes studied,the larger the foam cell size is,the higher the yield stress is.Aluminum foam density is found to be the dominant factor on its mechanical properties compared with the cell size and is much more significant in engineering practice. 展开更多
关键词 combined shear-compression closed-cell aluminum foam yield surface biaxial loading yield behavior
下载PDF
Proposal of Equivalent Porosity Indicator for Foam Aluminum Based on GRNN
4
作者 Wenhao Da Lucai Wang +3 位作者 Yanli Wang Xiaohong You Wenzhan Huang Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期16-31,共16页
To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these in... To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these indicators in analyzing foam aluminum's performance is limited.This study employs the Generalized Regression Neural Network(GRNN)method to establish a model that links foam aluminum's microstructure characterization data with its mechanical properties.Through the GRNN model,researchers extracted four of the most crucial features and their corresponding weight values from the 13 pore characteristics of foam aluminum.Subsequently,a new characterization formula,called“Wang equivalent porosity”(WEP),was developed by using residual weights assigned to the feature weights,and four parameter coefficients were obtained.This formula aims to represent the relationship between foam aluminum's microstructural features and its mechanical performance.Furthermore,the researchers conducted model verification using compression data from 11 sets of foam aluminum.The validation results showed that among these 11 foam aluminum datasets,the Gibson-Ashby formula yielded anomalous results in two cases,whereas WEP exhibited exceptional stability without any anomalies.In comparison to the Gibson-Ashby formula,WEP demonstrated an 18.18%improvement in evaluation accuracy. 展开更多
关键词 aluminum foam characterization index importance analysis feature learning
下载PDF
Cell-structure and mechanical properties of closed-cell aluminum foam 被引量:3
5
作者 周芸 左孝青 +1 位作者 孙加林 S.R.Nutt 《中国有色金属学会会刊:英文版》 CSCD 2004年第2期340-344,共5页
The density, cell size and structure of closed-cell aluminum foam were measured by optical microscopy and image analysis. The properties and the mechanism of compressive deformation that occur in closed-cell aluminum ... The density, cell size and structure of closed-cell aluminum foam were measured by optical microscopy and image analysis. The properties and the mechanism of compressive deformation that occur in closed-cell aluminum foam were measured and discussed. The results show that the cell size of foam with density of 0.37 mg/m^3 is distributed in the range of 0.5 4.0 mm. The cell size of foam with density of 0.33 mg/m^3 is distributed in the range of 0.55.0 mm. The cell wall thickness of both types is 0.10.3 mm. The closed-cell aluminum foam almost belongs to isotropic one, with a variation of ±15% in elastic modulus and yield strength in longitudinal and transverse direction. Under compressive loading, foam materials show inhomogeneous macroscopic deformation. The site of the onset of local plastic deformation depends on the cell structure. The shape of cell is more important than size in determining the yielding susceptibility of the cells. At early stage of deformation,the deformation is localized in narrow bands having width of one cells diameter, and outside the bands the cell still remains the original shape. The cells within bands experience large permanent deformation. The band normals are usually within 20° of the loading axis. 展开更多
关键词 泡沫铝 单元结构 机械性能 泡沫金属
下载PDF
Sound insulation property of Al-Si closed-cell aluminum foam bare board material 被引量:5
6
作者 尉海军 姚广春 +3 位作者 王晓林 李兵 尹銚 刘克 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第1期93-98,共6页
Al-Si closed-cell aluminum foam bare boards of 1 240 mm×1 100 mm with different densities and thicknesses wereprepared by molten body transitional foaming process.The sound reduction index(R)of Al-Si closed-cell ... Al-Si closed-cell aluminum foam bare boards of 1 240 mm×1 100 mm with different densities and thicknesses wereprepared by molten body transitional foaming process.The sound reduction index(R)of Al-Si closed-cell aluminum foam bareboards was investigated experimentally under different frequencies(100-4 000 Hz).It is found that sound reduction index(R)issmall under low frequencies,large under high frequencies and is controlled by different mechanisms.The sound insulation propertybasically conforms with the monolayer board sound insulation theory.The sound reduction index(R)increases with the even growthof thickness and density,but its rising trend is tempered.The single number sound reduction indexes(RW)of specimen with thicknessof 20 cm and density of 0.51 g/cm3are 30.8 dB and 33 dB respectively,which demonstrates good sound insulation property forlightmass materials. 展开更多
关键词 隔音材料 单层 密度 金属组织
下载PDF
Sound absorption and insulation property of closed-cell aluminum foam 被引量:2
7
作者 尉海军 李兵 +3 位作者 姚广春 王晓林 罗洪杰 刘宜汉 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1383-1387,共5页
The closed-cell aluminum foams (specimenρ=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimenρ=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for ... The closed-cell aluminum foams (specimenρ=0.31 g/cm3, diameter of 100 mm, and thickness of 20 mm for sound absorption testing; specimenρ=0.51 g/cm3, length of 1 240 mm, width of 1 100 mm, and thickness of 30 mm for sound insulation testing) were prepared by the method of molten body transitional foaming process. Its sound absorption property under frequency of 160-2 000 Hz and the sound insulation property under frequency of 100-4 000 Hz were tested. The sound absorption results show that the sound absorption property is much better under middle frequencies than that under low and high frequencies. The sound absorption coefficient climbs when frequency increases from 160 Hz to 800 Hz and then drops when frequency is increased from 800 Hz to 2 000 Hz. The function of the sound absorption mainly depends on the Helmholtz resonator, the microphone as well as cracks of closed-cell aluminum foam. The sound insulation experiments show that the sound reduction index (R) is small under low frequencies, and large under high frequencies; the weighted sound reduction index (Rw) and the highest sound reduction index (R) can reach around 30.8 dB and 43 dB, respectively. 展开更多
关键词 铝合金 泡沫材料 声音吸附 机械性能
下载PDF
Shape formation of closed-cell aluminum foam in solid–liquid–gas coexisting state
8
作者 Zhi-yong Liu Ying Cheng +3 位作者 Yan-xiang Li Xu Zhou Xiang Chen Ning-zhen Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第8期974-980,共7页
The mold pressing process was applied to investigate the formability of closed-cell aluminum foam in solid–liquid–gas coexisting state.Results show that the shape formation of closed-cell aluminum foam in the solid... The mold pressing process was applied to investigate the formability of closed-cell aluminum foam in solid–liquid–gas coexisting state.Results show that the shape formation of closed-cell aluminum foam in the solid–liquid–gas coexisting state was realized through cell wall deformation and cell movement caused by primary α-Al grains that slid,rotated,deformed,and ripened within cell walls.During formation,characteristic parameters of closed-cell aluminum foam were almost unchanged.Under proper forming conditions,shaped products of closed-cell aluminum foam could be fabricated through mold pressing. 展开更多
关键词 closed-celL aluminum foam SHAPE FORMING microstructure solid–liquid–gas coexisting state
下载PDF
Compressive characteristics of closed-cell aluminum foams with different percentages of Er element
9
作者 Wei-min Zhao Zan Zhang +3 位作者 Yong-ning Wang Xing-chuan Xia Hui Feng Jing Wang 《China Foundry》 SCIE 2016年第1期36-41,共6页
In the present study, closed-cell aluminum foams with different percentages of erbium (Er) element were successfully prepared. The distribution and existence form of erbium (Er) element and its effect on the compr... In the present study, closed-cell aluminum foams with different percentages of erbium (Er) element were successfully prepared. The distribution and existence form of erbium (Er) element and its effect on the compressive properties of the foams were investigated. Results show that Er uniformly distributes in the cell walls in the forms of Al3Er intermetallic compound and AI-Er solid solutions. Compared with commercially pure aluminum foam, Er-containing foams possess higher micro-hardness, compressive strength and energy absorption capacity due to solid solution strengthening and second phase strengthening effects. Additionally, the amount of Er element should be controlled in the range of 0.10wt.%-0.50wt.% in order to obtain a good combination of compressive strength and energy absorption properties. 展开更多
关键词 aluminum foams erbium element compressive property melt foaming method
下载PDF
The Effect of Shot-Peening Treatment on Microstructure and Corrosion Behavior of Closed-Cell Aluminum Foam
10
作者 Chengwu Zhang Yongdong He +3 位作者 Yanhua Chen Yongliang Mu Fengjun Zhao Xiaochun Li 《World Journal of Engineering and Technology》 2017年第4期89-98,共10页
Closed-cell aluminum foam was shot peened at different processing time (0 s, 5 s, 10 s, and 20 s), the intensity was the 0.12 mmA. The X-ray diffraction results showed that the reflections became weakened obviously wi... Closed-cell aluminum foam was shot peened at different processing time (0 s, 5 s, 10 s, and 20 s), the intensity was the 0.12 mmA. The X-ray diffraction results showed that the reflections became weakened obviously with the shot peened time increased. Combined with Popa model and lognormal distribute model, the surface microstructure of closed-cell aluminum foam was inves-tigated by using the Rietveld whole pattern fitting analysis method. The results revealed that domain size and microstrain fluctuated along different reflection directions after shot peened, which attributed to the random and anisotropic deformation direction. With the shot peened processing time prolonged, a decrease in domain size and an increase in microstrain were also observed. Moreover, the corrosion behavior of closed-cell aluminum foam was studied by weight-loss test. The results indicated that corrosion properties of specimen subjected to shot peened processing was better than the unpeened specimens. 展开更多
关键词 closed-celL aluminum Shot Peened MICROSTRUCTURE X-Ray DIFFRACTION Linear Analysis Corrosion Behavior
下载PDF
Effect of TiH_2 on preparation of closed-cell aluminum foam and its compressive behavior
11
作者 杨国俊 尉海军 姚广春 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1442-1445,共4页
The vesicant problem during the process of preparing closed-cell aluminum foam by molten body transitional foaming process was discussed and the effect of granularity and addition of TiH2on porosity of closed-cell alu... The vesicant problem during the process of preparing closed-cell aluminum foam by molten body transitional foaming process was discussed and the effect of granularity and addition of TiH2on porosity of closed-cell aluminum foam was investigated. The static compressive behavior of closed-cell aluminum foam and the influence of porosity on static compressive property of closed-cell aluminum foam were researched as well. The results show that with increasing granularity of TiH2,the porosity of closed-cell aluminum foam firstly increases and then decreases gradually, the granularity should be controlled in the range of 38-74μm which can result in higher porosity. The porosity of closed-cell aluminum foam increases with the increasing addition of TiH2, and the addition of TiH2 should be controlled from 1.5% to 2.5% which can result in homogeneous cell and moderate strength of closed-cell aluminum foam. The compressive process of closed-cell aluminum foam obviously displays linear elastic phase, plastic collapse phase, and densification phase, and the compressive strength grows with decreasing porosity. 展开更多
关键词 铝合金 泡沫材料 粒度 静力
下载PDF
Preparation and characterization of aluminum foams with ZrH_2 as foaming agent 被引量:7
12
作者 李大武 李杰 +3 位作者 李涛 孙挺 张小明 姚广春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期346-352,共7页
Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with ... Aluminum foams were fabricated by melt-based route using ZrH2 as a foaming agent. The factors which affected the foaming of aluminum foams during casting process were investigated. The powdered zirconium hydride with content of 0.6%-1.4% (mass fraction) was added to the molten pure aluminum and the foaming condition was controlled in a temperature range from 933 to 1 013 K, Ca amount of 1.5%-3.0% (mass fraction), stirring time of 0.5-2.5 min and holding time of 1.5-4.0 min to obtain homogeneous aluminum foams. The fabricated aluminum foams were characterized by XRD, SEM and Image-pro plus. The mechanical properties of the aluminum foams with different relative density were tested. The result indicates that the foaming agent (ZrH2) is suitable for the preparation of small aperture aluminum foams with average pore diameter of 1 mm. Inter-metallic compounds and Al2O3 have effect on the melt viscosity. The aluminum foams experience linear elastic, platforms and densification process and had a higher efficiency of energy absorption. 展开更多
关键词 aluminum foams zirconium hydride BUBBLE melt-based route
下载PDF
Three-point bending behavior of aluminum foam sandwich with steel panel 被引量:7
13
作者 祖国胤 卢日环 +4 位作者 李小兵 仲照阳 马幸江 韩明博 姚广春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2491-2495,共5页
Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated... Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN. 展开更多
关键词 aluminum foam sandwich three-point bending failure mode panel thickness
下载PDF
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
14
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
Oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:1
15
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2781-2788,共8页
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ... In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation. 展开更多
关键词 aluminum foam gas injection foaming process oxide film oxidation kinetics
下载PDF
Three-point bending performance of a new aluminum foam composite structure 被引量:6
16
作者 王宁珍 陈祥 +3 位作者 李奡 李言祥 张华伟 刘源 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期359-368,共10页
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit... A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed. 展开更多
关键词 composite structure three-point bending strength aluminum foam sandwich glass fiber
下载PDF
Effects of cell wall property on compressive performance of aluminum foams 被引量:4
17
作者 袁建宇 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1619-1625,共7页
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume... The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models. 展开更多
关键词 aluminum foams cell wall property uniaxial compressive performance FE analysis
下载PDF
Mechanical properties and energy absorption properties of aluminum foam-filled square tubes 被引量:16
18
作者 张春基 凤仪 张学斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第8期1380-1386,共7页
Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied.The foam-filled thin-walled square tube was fabricated ... Longitudinal and transverse mechanical properties and energy absorption properties of foam-filled square tubes under quasi-static loading conditions were studied.The foam-filled thin-walled square tube was fabricated with aluminum tube as its shell and closed-cell Al-Mg alloy foam as its core.The results indicated that the plateau region of the load-displacement curve exhibited a marked fluctuant serration which was clearly related to the formation of folds.The longitudinal deforming mode of foam-filled square tube was the same as that of the empty tube,but the fold number of foam-filled square tube was more than that of the empty tube.The longitudinal compression load and energy absorption value of foam-filled square tube were higher than the sum of that of aluminum foam (alone) and empty tube (alone) due to the interaction between tube and filler.In transverse direction,the compression load and energy absorption ability of foam-filled square tubes were significantly lower than those in longitudinal direction. 展开更多
关键词 aluminum foam foam-filled square tube compression load energy absorption
下载PDF
PREPARATION OF THE OPEN PORE ALUMINUM FOAMS USING INVESTMENT CASTING PROCESS 被引量:3
19
作者 L.C. Wang and F. Wang (Taiyuan Heavy Machinery Institute, Taiyuan 030024, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第1期27-32,共6页
This paper briefly presents characteristics, application and development of the metallic foams. Sound specimen has been achieved with prepared foam aluminum by using investment casting process. The preparation of plas... This paper briefly presents characteristics, application and development of the metallic foams. Sound specimen has been achieved with prepared foam aluminum by using investment casting process. The preparation of plaster prefabricated mould is one key in investment casting. Main composition, ingredient and affecting factors of plaster mould are also discussed and the vacuum-infiltrated shaping technique is found to be another important link. The penetration model and the affecting mechanism of the main parameters are also analyzed. As a result, the optimum values are determined. 展开更多
关键词 aluminum alloys foamed products foamS MOLDS PLASTER
下载PDF
Novel foaming agent used in preparation process of aluminum foams 被引量:4
20
作者 Xiangyang Zhou Xiquan Liu Jie Li Hongzhuan Liu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期735-739,共5页
The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated, and the effects of some factors, such as addition of the foaming agent, foaming temperature on the porosit... The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated, and the effects of some factors, such as addition of the foaming agent, foaming temperature on the porosity, and appearance of aluminum foams were also discussed. Experimental results show that the novel foaming agent has a wide decomposition temperature range and a mild decomposed rate; the foaming agent has the ability to enhance the viscosity of aluminum melt, as a result, an extra viscosifier such as Ca or SiCp is unnecessary while using this foaming agent; the bubble-free zone in material decreases and the foaming effi- ciency increases with the increase of foaming agent; the bubble-free zone disappears and the foaming efficiency is near 100% when the addition of foaming agent is more than 1.4wt%; the porosity of the aluminum foam increases with the increase of foaming agent when the addition of foaming agent is less than 2.2wt%. 展开更多
关键词 aluminum foam foaming agent POROSITY VISCOSITY foaming efficiency
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部