In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units an...In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.展开更多
Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesi...Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.展开更多
Robotic splicing of steel arches is a challenging task that is necessary to realize the grasping and docking of steel arches in a limited space.Steel arches often have a mass of more than 200 kg and length of more tha...Robotic splicing of steel arches is a challenging task that is necessary to realize the grasping and docking of steel arches in a limited space.Steel arches often have a mass of more than 200 kg and length of more than 4 m.Owing to the large volume and mass of steel arches and the high requirements for accurately positioning the splicing,it is difficult for a general manipulator to meet the stiffness requirements.To enhance the structural stiffness of the steel arch splicing manipulator,a single-degree-of-freedom(DOF)closed-loop mechanism was added to the grasping structure of the manipulator.Based on the basic principle of structural synthesis,a solution model of the single-DOF closed-loop mechanism was developed,and alternative kinematic pairs of the mechanism with different input constraints and output requirements were derived.Based on this model,a design method for a single-DOF closed-loop grasping mechanism and a posture adjustment mechanism for a steel arch was devised.Combined with the same dimensional subspace equivalence principle of the graphical-type synthesis method,12 types of steel arch splicing manipulator were constructed.By analyzing the motion/force transmission and structural complexity of the steel arch splicing manipulators,the best scheme was selected.A prototype of the steel arch splicing manipulator was manufactured.Adams software was used to obtain clearly the output trajectory of the end of the manipulator.The relative spatial positions of the upper and lower jaws under different working stages were analyzed,demonstrating that the manipulator satisfied the grasping requirements.Through a steel arch splicing experiment,the grasping effect,docking accuracy,and splicing efficiency of the manipulator met the design requirements.The steel arch splicing manipulator can replace the manual completion of the steel arch splicing operation,significantly improving the operation efficiency.展开更多
For dynamic stability analysis and instability mechanism understanding of multi-converter medium voltage DC power systems with droop-based double-loop control,an advanced system-level model reduction method is propose...For dynamic stability analysis and instability mechanism understanding of multi-converter medium voltage DC power systems with droop-based double-loop control,an advanced system-level model reduction method is proposed.With this method,mathematical relationships of control parameters(e.g.,current and voltage control parameters)between the system and its equivalent reduced-order model are established.First,open-loop and closed-loop equivalent reduced-order models of current control loop considering dynamic interaction among converters are established.An instability mechanism(e.g.,unreasonable current control parameters)of the system can be revealed intuitively.Theoretical guidance for adjustment of current control parameters can also be given.Then,considering dynamic interaction of current control among converters,open-loop and closed-loop equivalent reduced-order models of voltage control loop are established.Oscillation frequency and damping factor of DC bus voltage in a wide oscillation frequency range(e.g.,10–50 Hz)can be evaluated accurately.More importantly,accuracy of advanced system-level model reduction method is not compromised,even for MVDC power systems with inconsistent control parameters and different number of converters.Finally,experiments in RT-BOX hardware-in-the-loop experimental platform are conducted to validate the advanced system-level model reduction method.展开更多
Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembl...Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembly provide the necessary motion of the dragline bucket within its operating radius.The assembly resembles a five-link closed kinematic chain that has two independent generalized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope.Previous models failed to represent the actual closed loop of dragline front-end assembly,nor did they describe the maneuverability of dragline ropes under imposed geometric constraints.Therefore,a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of generalized speeds.It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles.The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories.The inverse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estimate the trajectories of the ropes.The trajectories are solved only during the digging phase and the singularity was eliminated using Baumgarte's stabilization technique(BST),with appropriate inequality constraint equations.It is shown that the feedforward displacement algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry.The research findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in machine downtime due to better control strategies of the dragline cycles.展开更多
Purpose–The purpose of this paper is to develop an automatic control system for mechanical ventilation therapy based on the open lung concept(OLC)using artificial intelligence.In addition,mean arterial blood pressure...Purpose–The purpose of this paper is to develop an automatic control system for mechanical ventilation therapy based on the open lung concept(OLC)using artificial intelligence.In addition,mean arterial blood pressure(MAP)is stabilized by means of a decoupling controller with automated noradrenaline(NA)dosage to ensure adequate systemic perfusion during ventilation therapy for patients with acute respiratory distress syndrome(ARDS).Design/methodology/approach–The aim is to develop an automatic control system for mechanical ventilation therapy based on the OLC using artificial intelligence.In addition,MAP is stabilized by means of a decoupling controller with automated NA dosage to ensure adequate systemic perfusion during ventilation therapy for patients with ARDS.Findings–Thisinnovativeclosed-loop mechanicalventilation system leadsto a significant improvement in oxygenation,regulates end-tidal carbon dioxide for appropriate gas exchange and stabilizes MAP to guarantee proper systemic perfusion during the ventilation therapy.Research limitations/implications–Currently,this automatic ventilation system based on the OLC can only be applied in animal trials;for clinical use,such a system generally requires a mechanical ventilator and sensors with medical approval for humans.Practical implications–For implementation of a closed-loop ventilation system,reliable signals from the sensors are a prerequisite for successful application.Originality/value–Theexperiment with porcine dynamics demonstrates thefeasibility and usefulness of this automatic closed-loop ventilation therapy,with hemodynamic control for severe ARDS.Moreover,this pilot study validated a new algorithm for implementation of the OLC,whereby all control objectives are fulfilled during the ventilation therapy with adequate hemodynamic control of patients with ARDS.展开更多
Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for loa...Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for load-bearing body and chassis components today are mostly made from primary Al with a low impurity Fe content typically less than 0.2 wt.%,owing to the requirements for high ductility and adequate fatigue strength.Primary Al is made directly from alumina which was refined from aluminum ore(bauxite),using an electrolytic process which consumes a lot of energy and produces GHG emissions that are much higher than those from steel making.The objective of this paper is to present a Unified Casting(UniCast)Al alloy concept as a sustainable materials solution for vehicle lightweighting.The UniCast alloy chemistry is intentionally designed to be more tolerant of Fe impurity.This chemistry can not only satisfy the requirements on castability,but also deliver mechanical properties needed for a variety of thin-walled and thick-walled automotive structural components that are produced by various casting processes.The UniCast alloy concept will contribute to the establishment of a closed-loop recycling system in the future as the shredded scrap obtained from the disposed end-of-life vehicles can be directly recycled back into UniCast alloy ingot with a more efficient sorting process.In addition,by setting the upper limit of Fe content in the UniCast alloy to a higher level,it will become possible to use a high fraction of post-consumer scraps to produce this alloy.To demonstrate the feasibility of this concept,an exemplary UniCast alloy chemistry has been elaborated in this article.Furthermore,challenges and future research opportunities related to the realization of UniCast alloy concept in the automotive industry are discussed.It is hoped that this article will be of great implication to industrial researchers and academicians for making concerted efforts to establish closed-loop recycling of Al castings for the automotive and other transportation industry segments.展开更多
The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion,antibacterial effect,real-time sensing,wireless communication,and on-demand treatme...The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion,antibacterial effect,real-time sensing,wireless communication,and on-demand treatment capabilities.Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths,as well as tunable optical,electrical,and bio-dissolvable properties.Accelerated wound healing has been achieved via directly released antibacterial and growth factors,material or drug-induced host immune responses,and delivery of curative cells.Most recently,the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives,allowing real-time sensing of the physiological conditions(e.g.,pH,temperature,uric acid,glucose,and cytokine)with iterative feedback for drastically enhanced,stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation.Despite rapid advances in the burgeoning field,challenges still exist in the design and fabrication of integrated systems,particularly for chronic wounds,presenting significant opportunities for the future development of next-generation smart materials and systems.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52275032)Key Project of Hebei Provincial Natural Science Foundation of China(Grant No.E2022203077)Hebei Provincial Key Research and Development Plan of China(Grant No.202230808010057).
文摘In order to solve the problem of weak stifness of the existing fully decoupled parallel mechanism, a new synthesis method of fully decoupled three translational (3T) parallel mechanisms (PMs) with closed-loop units and high stifness is proposed based on screw theory. Firstly, a new criterion for the full decoupled of PMs is presented that the reciprocal product of the transmission wrench screw matrix and the output twist screw matrix of PMs is a diagonal matrix, and all elements on the main diagonal are nonzero constants. The forms of the transmission wrench screws are determined by the criterion. Secondly, the forms of the actuated and unactuated screws can be obtained according to their relationships with the transmission wrench screws. The basic decoupled limbs are generated by combination of the above actuated and unactuated screws. Finally, a closed-loop units construction method is investigated to apply the decoupled mechanisms in a better way on the high stifness occasion. The closed-loop units are constructed in the basic decoupled limbs to generate a high-stifness fully decoupled 3T PM. Kinematic and stifness analyses show that the Jacobian matrix is a diagonal matrix, and the stifness is obviously higher than that of the coupling mechanisms, which verifes the correctness of the proposed synthesis method. The mechanism synthesized by this method has a good application prospect in vehicle durability test platform.
文摘Recently novel mechanisms with compact size and without many mechanical elements such as bearing are strongly required for medical devices such as surgical operation devices. This paper describes analysis and synthesis of elastic link mechanisms of a single spring beam which can be manufactured by NC coiling machines. These mechanisms are expected as disposable micro forceps. Smooth Curvature Model(SCM) with 3rd order Legendre polynomial curvature functions is applied to calculate large deformation of a curved cantilever beam by taking account of the balance between external and internal elastic forces and moments. SCM is then extended to analyze large deformation of a closed-loop curved elastic beam which is composed of multiple free curved beams. A closed-loop elastic link is divided into two free curved cantilever beams each of which is assumed as serially connected free curved cantilever beams described with SCM. The sets of coefficients of Legendre polynomials of SCM in all free curved cantilever beams are determined by taking account of the force and moment balance at connecting point where external input force is applied. The sets of coefficients of Legendre polynomials of a nonleaded closed-loop elastic link are optimized to design a link mechanism which can generate specified output motion due to input force applied at the assumed dividing point. For example, two planar micro grippers with a single pulling input force are analyzed and designed. The elastic deformation analyzed with proposed method agrees very well with that calculated with FEM. The designed micro gripper can generate the desired pinching motion. The proposed method can contribute to design compact and simple elastic mechanisms without high calculation costs.
基金Supported by Special funding support for the construction of innovative provinces in Hunan Province(Grant No.2019GK1010)National Key R&D Program of China(Grant No.2017YFB1302600).
文摘Robotic splicing of steel arches is a challenging task that is necessary to realize the grasping and docking of steel arches in a limited space.Steel arches often have a mass of more than 200 kg and length of more than 4 m.Owing to the large volume and mass of steel arches and the high requirements for accurately positioning the splicing,it is difficult for a general manipulator to meet the stiffness requirements.To enhance the structural stiffness of the steel arch splicing manipulator,a single-degree-of-freedom(DOF)closed-loop mechanism was added to the grasping structure of the manipulator.Based on the basic principle of structural synthesis,a solution model of the single-DOF closed-loop mechanism was developed,and alternative kinematic pairs of the mechanism with different input constraints and output requirements were derived.Based on this model,a design method for a single-DOF closed-loop grasping mechanism and a posture adjustment mechanism for a steel arch was devised.Combined with the same dimensional subspace equivalence principle of the graphical-type synthesis method,12 types of steel arch splicing manipulator were constructed.By analyzing the motion/force transmission and structural complexity of the steel arch splicing manipulators,the best scheme was selected.A prototype of the steel arch splicing manipulator was manufactured.Adams software was used to obtain clearly the output trajectory of the end of the manipulator.The relative spatial positions of the upper and lower jaws under different working stages were analyzed,demonstrating that the manipulator satisfied the grasping requirements.Through a steel arch splicing experiment,the grasping effect,docking accuracy,and splicing efficiency of the manipulator met the design requirements.The steel arch splicing manipulator can replace the manual completion of the steel arch splicing operation,significantly improving the operation efficiency.
基金supported by the National Key Research and Development Program of China(2020YFB1506800)the China Postdoctoral Science Foundation(2021M692378)the National Natural Science Foundation of China(51977142).
文摘For dynamic stability analysis and instability mechanism understanding of multi-converter medium voltage DC power systems with droop-based double-loop control,an advanced system-level model reduction method is proposed.With this method,mathematical relationships of control parameters(e.g.,current and voltage control parameters)between the system and its equivalent reduced-order model are established.First,open-loop and closed-loop equivalent reduced-order models of current control loop considering dynamic interaction among converters are established.An instability mechanism(e.g.,unreasonable current control parameters)of the system can be revealed intuitively.Theoretical guidance for adjustment of current control parameters can also be given.Then,considering dynamic interaction of current control among converters,open-loop and closed-loop equivalent reduced-order models of voltage control loop are established.Oscillation frequency and damping factor of DC bus voltage in a wide oscillation frequency range(e.g.,10–50 Hz)can be evaluated accurately.More importantly,accuracy of advanced system-level model reduction method is not compromised,even for MVDC power systems with inconsistent control parameters and different number of converters.Finally,experiments in RT-BOX hardware-in-the-loop experimental platform are conducted to validate the advanced system-level model reduction method.
基金The funding from the Robert H.Quenon Endowment at Missouri S&T for this research is also greatly acknowledged.
文摘Dragline excavators are closed-loop mining manipulators that operate using a rigid multilink framework and rope and rigging system,which constitute its front-end assembly.The arrangements of dragline front-end assembly provide the necessary motion of the dragline bucket within its operating radius.The assembly resembles a five-link closed kinematic chain that has two independent generalized coordinates of drag and hoist ropes and one dependent generalized coordinate of dump rope.Previous models failed to represent the actual closed loop of dragline front-end assembly,nor did they describe the maneuverability of dragline ropes under imposed geometric constraints.Therefore,a three degrees of freedom kinematic model of the dragline front-end is developed using the concept of generalized speeds.It contains all relevant configuration and kinematic constraint conditions to perform complete digging and swinging cycles.The model also uses three inputs of hoist and drag ropes linear and a rotational displacement of swinging along their trajectories.The inverse kinematics is resolved using a feedforward displacement algorithm coupled with the Newton-Raphson method to accurately estimate the trajectories of the ropes.The trajectories are solved only during the digging phase and the singularity was eliminated using Baumgarte's stabilization technique(BST),with appropriate inequality constraint equations.It is shown that the feedforward displacement algorithm can produce accurate trajectories without the need to manually solve the inverse kinematics from the geometry.The research findings are well in agreement with the dragline real operational limits and they contribute to the efficiency and the reduction in machine downtime due to better control strategies of the dragline cycles.
基金Pulsion Medical Systems AG for the use of their pulse oximeter during the animal experiment conducted at the CharitéUniversity Hospital Berlin.
文摘Purpose–The purpose of this paper is to develop an automatic control system for mechanical ventilation therapy based on the open lung concept(OLC)using artificial intelligence.In addition,mean arterial blood pressure(MAP)is stabilized by means of a decoupling controller with automated noradrenaline(NA)dosage to ensure adequate systemic perfusion during ventilation therapy for patients with acute respiratory distress syndrome(ARDS).Design/methodology/approach–The aim is to develop an automatic control system for mechanical ventilation therapy based on the OLC using artificial intelligence.In addition,MAP is stabilized by means of a decoupling controller with automated NA dosage to ensure adequate systemic perfusion during ventilation therapy for patients with ARDS.Findings–Thisinnovativeclosed-loop mechanicalventilation system leadsto a significant improvement in oxygenation,regulates end-tidal carbon dioxide for appropriate gas exchange and stabilizes MAP to guarantee proper systemic perfusion during the ventilation therapy.Research limitations/implications–Currently,this automatic ventilation system based on the OLC can only be applied in animal trials;for clinical use,such a system generally requires a mechanical ventilator and sensors with medical approval for humans.Practical implications–For implementation of a closed-loop ventilation system,reliable signals from the sensors are a prerequisite for successful application.Originality/value–Theexperiment with porcine dynamics demonstrates thefeasibility and usefulness of this automatic closed-loop ventilation therapy,with hemodynamic control for severe ARDS.Moreover,this pilot study validated a new algorithm for implementation of the OLC,whereby all control objectives are fulfilled during the ventilation therapy with adequate hemodynamic control of patients with ARDS.
基金the National Natural Science Foundation of China(No.51904352)the Scientific Research Foundation of Hunan Provincial Education Department,China(No.22A0004).
文摘Casting aluminum(Al)alloys have been widely used in the automotive industry to improve fuel economy as well as to reduce greenhouse gas(GHG)emissions in the vehicle use phase.However,the casting Al alloys used for load-bearing body and chassis components today are mostly made from primary Al with a low impurity Fe content typically less than 0.2 wt.%,owing to the requirements for high ductility and adequate fatigue strength.Primary Al is made directly from alumina which was refined from aluminum ore(bauxite),using an electrolytic process which consumes a lot of energy and produces GHG emissions that are much higher than those from steel making.The objective of this paper is to present a Unified Casting(UniCast)Al alloy concept as a sustainable materials solution for vehicle lightweighting.The UniCast alloy chemistry is intentionally designed to be more tolerant of Fe impurity.This chemistry can not only satisfy the requirements on castability,but also deliver mechanical properties needed for a variety of thin-walled and thick-walled automotive structural components that are produced by various casting processes.The UniCast alloy concept will contribute to the establishment of a closed-loop recycling system in the future as the shredded scrap obtained from the disposed end-of-life vehicles can be directly recycled back into UniCast alloy ingot with a more efficient sorting process.In addition,by setting the upper limit of Fe content in the UniCast alloy to a higher level,it will become possible to use a high fraction of post-consumer scraps to produce this alloy.To demonstrate the feasibility of this concept,an exemplary UniCast alloy chemistry has been elaborated in this article.Furthermore,challenges and future research opportunities related to the realization of UniCast alloy concept in the automotive industry are discussed.It is hoped that this article will be of great implication to industrial researchers and academicians for making concerted efforts to establish closed-loop recycling of Al castings for the automotive and other transportation industry segments.
基金supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award No.R21EB030140the National Heart,Lung,and Blood Institute of the National Institutes of Health under Award Number R61HL154215,the National Science Foundation(NSF)(Grant No.ECCS-1933072)Penn State University.Y.L.would like to acknowledge the support of the Natural Science Foundation of China under Grant 61825102,U21A20460.
文摘The high demand for rapid wound healing has spurred the development of multifunctional and smart bioadhesives with strong bioadhesion,antibacterial effect,real-time sensing,wireless communication,and on-demand treatment capabilities.Bioadhesives with bio-inspired structures and chemicals have shown unprecedented adhesion strengths,as well as tunable optical,electrical,and bio-dissolvable properties.Accelerated wound healing has been achieved via directly released antibacterial and growth factors,material or drug-induced host immune responses,and delivery of curative cells.Most recently,the integration of biosensing and treatment modules with wireless units in a closed-loop system yielded smart bioadhesives,allowing real-time sensing of the physiological conditions(e.g.,pH,temperature,uric acid,glucose,and cytokine)with iterative feedback for drastically enhanced,stage-specific wound healing by triggering drug delivery and treatment to avoid infection or prolonged inflammation.Despite rapid advances in the burgeoning field,challenges still exist in the design and fabrication of integrated systems,particularly for chronic wounds,presenting significant opportunities for the future development of next-generation smart materials and systems.