The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of whic...The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.展开更多
In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineeri...In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineering.Mineralization modeling is divided into two general categories,superficial and deep modeling.In surface modeling,the aim is finding abnormal locations in terms of mineralization at the study area,which is commonly used in the early stages of exploration as one of the means for locating exploratory boreholes.After drilling in the study area with the aim of identifying mineralization and reserve estimation it is necessary to obtain deep mineralization position and its geometric features,using statistical and modeling methods.Using mathematical,statistical and modeling methods,we can predict the position of iron mineralization in places where drilling is not done and eventually reach a three-dimensional model of the mineral materials underground.As a case study,the deep information about the boreholes of the sheytoor mining area in Yazd province of Iran was investigated.Iron mineralization was modeled as 2D cumulative model and 3D block model,and the results were presented.Finally the geochemical threshold and the anomalous limit of iron element are calculated by concentration-volume(C-V)fractal method in this deposit.Geochemical threshold and the anomalous limit for Fe in this deposit are 24.7%and 34.3%respectively.展开更多
A study of the magnetic field with an unsaturated iron core in tokamak equilibrium using a spool model is described in detail. The application of this model to the J-TEXT tokamak shows that the calculated results are ...A study of the magnetic field with an unsaturated iron core in tokamak equilibrium using a spool model is described in detail. The application of this model to the J-TEXT tokamak shows that the calculated results are in good agreement with those measured experimentally. At present this scheme is used to give the plasma configuration during J-TEXT's operation.展开更多
A special winding iron-core is designed to act as the snubber for the neutral beam injection (NBI) power supply (PS) system in EAST, which will limit the fault current and energy caused by occasional sparking in t...A special winding iron-core is designed to act as the snubber for the neutral beam injection (NBI) power supply (PS) system in EAST, which will limit the fault current and energy caused by occasional sparking in the NBI ion source. 50-50 Ni-Fe is chosen as the high-frequency magnetization material for the iron-core. Equations for the snubber is derived from the design of the iron-core. The iron-loss factor and eddy-current losses are found to increase in a sample experiment at a frequency from 1 kHz to 20 kHz. A 1:10 miniature of the iron-core is tested and performs well with a fine capability.展开更多
Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exp...Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).展开更多
In recent decades,global seismic observations have identified increasingly complex anisotropy of the Earth’s inner core.Numerous seismic studies have confirmed hemispherical variations in the inner core’s anisotropy...In recent decades,global seismic observations have identified increasingly complex anisotropy of the Earth’s inner core.Numerous seismic studies have confirmed hemispherical variations in the inner core’s anisotropy.Here,based on ab initio molecular dynamics calculations,we report how the anisotropy of hexagonal close-packed(hcp)-iron,under inner core conditions,could be altered when alloyed with light elements.We find that light elements in binary allows with iron-hcp-Fe-X(X=C,O,Si,and S)-could have significant effects on density,sound velocities,and anisotropy,compared with the behavior of pure hcp-iron;the anisotropy of these binary alloys depends on combined effects of temperature and the particular alloying light element.Furthermore,the change in anisotropy strength with increasing temperature can be charted for each alloy.Alloying pure iron with some light elements such as C or O actually does not increase but decreases core anisotropy at high temperatures.But the light element S can significantly enhance the elastic anisotropy strength of hcp-Fe.展开更多
The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential can...The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential candidates based on cosmochemical considerations(Stevenson,1981).High-pressure experiment results,in conjunction with theoretical and cosmochemical evidences,argued that it is difficult for any one of them to account for the core展开更多
A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equival...A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equivalent circuit, the ranges of three key parameters, i.e., secondary side resistance, leakage inductance and snubber inductance, are determined. By con- sidering the saturation of the magnetic material, a design principle is Mso presented. A nearly 1:10 core snubber is tested. It is proved that a high permeability core with secondary resistor can restrain the discharge current effectively.展开更多
The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal ...The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.展开更多
AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidat...AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidative stress, HMOX1, and HCV expression were assessed in CON1 cells. Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots. RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and upegulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOXl. Silencing the up-regulation of HMOXl nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOXl mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%, nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells, whereas DFO increased them. CONCLUSION: Excess iron up-regulates HMOXl and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.展开更多
In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was fo...In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.展开更多
In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to i...In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.展开更多
The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluate...The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.展开更多
The dissolution kinetics of the dissolution of iron ore in aqueous HCl/HNO3solution was studied. The elemental composition of the ore was carried out using the inductively coupled plasma-optical emission spectrophotom...The dissolution kinetics of the dissolution of iron ore in aqueous HCl/HNO3solution was studied. The elemental composition of the ore was carried out using the inductively coupled plasma-optical emission spectrophotometer (ICP-OES). The result showed that the iron ore contain;Fe (62.1%), O (21.7%), Cu (11.1%), Mg (2.39%), Na (1.51%), Mn (1.47%), K (0.78%), Ca (0.58%) and Zn (0.01%). It was determined that the dissolution rate increased with increased solution concentration, temperature, time and decreased particle size of the ore. The optimum conditions for effective dissolution of 88% of the iron ore were found to be 8 Mof the solution, 353 K, 100 min and ore particle size of less than 75 μm. The kinetic evaluation of the dissolution process was studied using three different shrinking core models (SCM);Film diffusion: kft =XB;interfacial chemical reaction krt =?1-(1-XB)1/3?and ash/product layer diffusion :??for spherical materials was performed. The results obtained showed that the rate determining step for the dissolution process was the product layer diffusion and therefore, the reaction followed this mechanism. The apparent activation energy (Ea) and the order of reaction were found to be 20.48 kJ/mol and 0.7 respectively.展开更多
The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly co...The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.展开更多
In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reporte...In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.展开更多
基金supported by the National Science Foundation (No. 1248553)
文摘The amount of literature on both melting and thermal conductivity of iron at Earth’s core conditions is overwhelming and the discrepancies are very large.There is a broad range of experimental techniques each of which is flawed to a certain degree,which may explain the discrepancy.In this report,we present new data using a different method for determining the phase behavior and resistivity of iron in the laser-heated diamond cell by measuring the electrical resistance of both solid and liquid iron wires.The experiment avoids some of the major flaws of previous experiments,the most important of which is the detection of the onset of melting.These measurements confirm a shallow melting curve found earlier and the resistivity data imply a trend towards low thermal conductivity in the liquid outer core.
文摘In general,the purpose of the mineralization modeling is the advancement of a mineral exploration project and ultimately,the extractive design of a deposit,which is one of the most important stages in mining engineering.Mineralization modeling is divided into two general categories,superficial and deep modeling.In surface modeling,the aim is finding abnormal locations in terms of mineralization at the study area,which is commonly used in the early stages of exploration as one of the means for locating exploratory boreholes.After drilling in the study area with the aim of identifying mineralization and reserve estimation it is necessary to obtain deep mineralization position and its geometric features,using statistical and modeling methods.Using mathematical,statistical and modeling methods,we can predict the position of iron mineralization in places where drilling is not done and eventually reach a three-dimensional model of the mineral materials underground.As a case study,the deep information about the boreholes of the sheytoor mining area in Yazd province of Iran was investigated.Iron mineralization was modeled as 2D cumulative model and 3D block model,and the results were presented.Finally the geochemical threshold and the anomalous limit of iron element are calculated by concentration-volume(C-V)fractal method in this deposit.Geochemical threshold and the anomalous limit for Fe in this deposit are 24.7%and 34.3%respectively.
基金supported by National Basic Research Program ('973'Program)of China (No.2008CB717805)
文摘A study of the magnetic field with an unsaturated iron core in tokamak equilibrium using a spool model is described in detail. The application of this model to the J-TEXT tokamak shows that the calculated results are in good agreement with those measured experimentally. At present this scheme is used to give the plasma configuration during J-TEXT's operation.
文摘A special winding iron-core is designed to act as the snubber for the neutral beam injection (NBI) power supply (PS) system in EAST, which will limit the fault current and energy caused by occasional sparking in the NBI ion source. 50-50 Ni-Fe is chosen as the high-frequency magnetization material for the iron-core. Equations for the snubber is derived from the design of the iron-core. The iron-loss factor and eddy-current losses are found to increase in a sample experiment at a frequency from 1 kHz to 20 kHz. A 1:10 miniature of the iron-core is tested and performs well with a fine capability.
文摘Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.41704088 and 11804284)the Open Foundation of Hypervelocity Impact Research Center of CARDC(Grant No.20200202)。
文摘In recent decades,global seismic observations have identified increasingly complex anisotropy of the Earth’s inner core.Numerous seismic studies have confirmed hemispherical variations in the inner core’s anisotropy.Here,based on ab initio molecular dynamics calculations,we report how the anisotropy of hexagonal close-packed(hcp)-iron,under inner core conditions,could be altered when alloyed with light elements.We find that light elements in binary allows with iron-hcp-Fe-X(X=C,O,Si,and S)-could have significant effects on density,sound velocities,and anisotropy,compared with the behavior of pure hcp-iron;the anisotropy of these binary alloys depends on combined effects of temperature and the particular alloying light element.Furthermore,the change in anisotropy strength with increasing temperature can be charted for each alloy.Alloying pure iron with some light elements such as C or O actually does not increase but decreases core anisotropy at high temperatures.But the light element S can significantly enhance the elastic anisotropy strength of hcp-Fe.
文摘The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential candidates based on cosmochemical considerations(Stevenson,1981).High-pressure experiment results,in conjunction with theoretical and cosmochemical evidences,argued that it is difficult for any one of them to account for the core
基金supported in part by Auxiliary Heating Project of EAST upgradein part by Ph. D foundation of State Education Ministry of China(No. 20060248012)
文摘A transformer type iron core snubber, as a protective device against the stray capacitance during the breakdown in EAST, is analyzed in detail. Three kinds of topology are presented. Then with the analysis for equivalent circuit, the ranges of three key parameters, i.e., secondary side resistance, leakage inductance and snubber inductance, are determined. By con- sidering the saturation of the magnetic material, a design principle is Mso presented. A nearly 1:10 core snubber is tested. It is proved that a high permeability core with secondary resistor can restrain the discharge current effectively.
基金financially supported by the Hebei Province Science and Technology Support Program(No.14211007D)
文摘The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.
基金Supported by Grant(DK RO1 38825) and contracts(DK NO129236 and UO1 DK 06193)from the National Institutes of Health(NIDDK)
文摘AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidative stress, HMOX1, and HCV expression were assessed in CON1 cells. Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots. RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and upegulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOXl. Silencing the up-regulation of HMOXl nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOXl mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%, nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells, whereas DFO increased them. CONCLUSION: Excess iron up-regulates HMOXl and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.
文摘In a simple ethanol-water system,the magnetic α-Fe nanoparticles(with an average diameter of 10-40 nm)were prepared by reduction of Fe2 +using potassium borohydride in the presence of surfactant.Then the shell was formed by hydrolysis-condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of the Fe particles.The samples were characterized by XRD,TEM,SAED,TG-DSC and VSM.The results indicate that a thin film of silica is coated on the surface of Fe particles through a Si-O-Fe bond.The coated shell of silica can effectively protect the Fe cores from being oxidized.
基金financially supported by the Foundation of Heilongjiang Educational Committee(Grant No.12531116)the Harbin Special Funds for Creative Talents in Science and Technology(Grant No.2013RFQXJ102)
文摘In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.
文摘The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.
文摘The dissolution kinetics of the dissolution of iron ore in aqueous HCl/HNO3solution was studied. The elemental composition of the ore was carried out using the inductively coupled plasma-optical emission spectrophotometer (ICP-OES). The result showed that the iron ore contain;Fe (62.1%), O (21.7%), Cu (11.1%), Mg (2.39%), Na (1.51%), Mn (1.47%), K (0.78%), Ca (0.58%) and Zn (0.01%). It was determined that the dissolution rate increased with increased solution concentration, temperature, time and decreased particle size of the ore. The optimum conditions for effective dissolution of 88% of the iron ore were found to be 8 Mof the solution, 353 K, 100 min and ore particle size of less than 75 μm. The kinetic evaluation of the dissolution process was studied using three different shrinking core models (SCM);Film diffusion: kft =XB;interfacial chemical reaction krt =?1-(1-XB)1/3?and ash/product layer diffusion :??for spherical materials was performed. The results obtained showed that the rate determining step for the dissolution process was the product layer diffusion and therefore, the reaction followed this mechanism. The apparent activation energy (Ea) and the order of reaction were found to be 20.48 kJ/mol and 0.7 respectively.
基金financial support from the National Natural Science Foundation of China(Grant Nos.41804082 and 41873073)the Special Research Assistant Funding Program provided by the Chinese Academy of Sciences。
文摘The Earth’s core is composed of iron,nickel,and a small amount of light elements(e.g.,Si,S,O,C,N,H and P).The thermal conductivities of these components dominate the adiabatic heat flow in the core,which is highly correlated to geodynamo.Here we review a large number of studies on the electrical and thermal conductivity of iron and iron alloys and discuss their implications on the thermal evolution of the Earth’s core.In summary,we suggest that the Wiedemann-Franz law,commonly used to convert the electrical resistivity to thermal conductivity for metals and alloys,should be cautiously applied under extremely high pressure-temperature(P-T)conditions(e.g.,Earth’s core)because the Lorentz number may be P-T dependent.To date,the discrepancy in the thermal conductivity of iron and iron alloys remains between those from the resistivity measurements and the thermal diffusivity modeling,where the former is systematically larger.Recent studies reconcile the electrical resistivity by first-principles calculation and direct measurements,and this is a good start in resolving this discrepancy.Due to an overall higher thermal conductivity than previously thought,the inner core age is presently constrained at~1.0 Ga.However,light elements in the core would likely lower the thermal conductivity and prolong the crystallization of the inner core.Meanwhile,whether thermal convection can power the dynamo before the inner core formation depends on the amounts of the proper light elements in the core.More works are needed to establish the thermal evolution model of the core.
文摘In metallurgical processes, more and more usage of hydrocarbons is encouraged to bring down the carbon emissions. In this regard, numerous investigations on reduction of oxides by C-O-H-N gas mixture have been reported. Attempts to simulate these reduction processes using shrinking core model, one of the common models used for such studies, have under predicted the reduction rates. This may be owing to the fact that the homogeneous reaction in the gas phase is not being considered. If the reaction temperatures are above 1,000 K, generally so for many reduction processes, the homogeneous gas reaction rates are expected to be high enough that local equilibrium in the gas phase can be assumed. In the present study, reduction of wustite in a C-O-H-N gas mixture has been modeled using shrinking core model considering the water gas shift equilibrium in the gas while it diffuses through the product layer.