期刊文献+
共找到1,763篇文章
< 1 2 89 >
每页显示 20 50 100
Parameter Optimization of Tuned Mass Damper Inerter via Adaptive Harmony Search
1
作者 Yaren Aydın Gebrail Bekdas +1 位作者 Sinan Melih Nigdeli Zong Woo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2471-2499,共29页
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ... Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems. 展开更多
关键词 Passive control optimum design parameter optimization tuned mass damper inerter time domain adaptive harmony search algorithm
下载PDF
Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters 被引量:20
2
作者 Ying-Hong Jia Quan Hu Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期112-124,共13页
A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of contro... A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the po- sition and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters be- ing estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. 展开更多
关键词 Space robot Dynamics. Adaptive control closed-loop constraint parameter uncertainty - Kane's equation
下载PDF
Fault Diagnosis Based on Fuzzy Support Vector Machine with Parameter Tuning and Feature Selection 被引量:10
3
作者 毛勇 夏铮 +2 位作者 尹征 孙优贤 万征 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第2期233-239,共7页
This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an e... This study describes a classification methodology based on support vector machines(SVMs),which offer superior classification performance for fault diagnosis in chemical process engineering.The method incorporates an efficient parameter tuning procedure(based on minimization of radius/margin bound for SVM's leave-one-out errors)into a multi-class classification strategy using a fuzzy decision factor,which is named fuzzy support vector machine(FSVM).The datasets generated from the Tennessee Eastman process(TEP)simulator were used to evaluate the clas-sification performance.To decrease the negative influence of the auto-correlated and irrelevant variables,a key vari-able identification procedure using recursive feature elimination,based on the SVM is implemented,with time lags incorporated,before every classifier is trained,and the number of relatively important variables to every classifier is basically determined by 10-fold cross-validation.Performance comparisons are implemented among several kinds of multi-class decision machines,by which the effectiveness of the proposed approach is proved. 展开更多
关键词 fuzzy support vector machine parameter tuning fault diagnosis key variable identification
下载PDF
Tuning PID Parameters Based on a Combination of the Expert System and the Improved Genetic Algorithms 被引量:3
4
作者 Zuo Xin Zhang Junfeng Luo Xionglin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期71-76,共6页
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic... a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness. 展开更多
关键词 PID parameters tuning orthogonal experiment method genetic algorithm expert system
下载PDF
Controller Parameter Tuning of Delta Robot Based on Servo Identification 被引量:8
5
作者 ZHAO Qing WANG Panfeng MEI Jiangping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期267-275,共9页
High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameter... High-speed pick-and-place parallel robot is a system where the inertia imposed on the motor shafts is real-time changing with the system configurations.High quality of computer control with proper controller parameters is conducive to overcoming this problem and has a significant effect on reducing the robot's tracking error.By taking Delta robot as an example,a method for parameter tuning of the fixed gain motion controller is presented.Having identifying the parameters of the servo system in the frequency domain by the sinusoidal excitation,the PD+feedforward control strategy is proposed to adapt to the varying inertia loads,allowing the controller parameters to be tuned by minimizing the mean square tracking error along a typical trajectory.A set of optimum parameters is obtained through computer simulations and the effectiveness of the proposed approach is validated by experiments on a real prototype machine.Let the traveling plate undergoes a specific trajectory and the results show that the tracking error can be reduced by at least 50%in comparison with the conventional auto-tuning and Z-N methods.The proposed approach is a whole workspace optimization and can be applied to the parameter tuning of fixed gain motion controllers. 展开更多
关键词 parallel robot servo system identification parameter tuning mean square error
下载PDF
Application of Time Scale to Parameters Tuning of Active Disturbance Rejection Controller for Induction Motor 被引量:2
6
作者 邵立伟 廖晓钟 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期419-423,共5页
Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. T... Active disturbance rejection controller (ADRC) has good performance in induction motor (IM) control system, but controller parameter is difficult to tune. A method of tuning ADRC parameter by time scale is analyzed. The IM time scale is obtained by theoretical analysis. Combining the relations between scale time and ADRC parameters, ADRC parameter tuning in IM vector control based stator flux oriented is obtained. This parameter tuning method is validated by simulations and it provides a new technique for tuning of ADRC parameters of IM. 展开更多
关键词 time scale active disturbance rejection controller parameter tuning
下载PDF
Parameter Tuning Method for Dither Compensation of a Pneumatic Proportional Valve with Friction 被引量:5
7
作者 WANG Tao SONG Yang +1 位作者 HUANG Leisheng FAN Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期607-614,共8页
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dyn... In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally. 展开更多
关键词 proportional valve hysteresis dither compensation parameter tuning method
下载PDF
Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation
8
作者 Zhi Li Yufei Zhao +2 位作者 Yueming Ji Hanwen Gu Zaibin Jiao 《Energy Engineering》 EI 2024年第12期3899-3927,共29页
By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ... By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations. 展开更多
关键词 DC distribution system digital grid small-signal stability eigenvalue parametric sensitivity particle swarm optimization parameter boundary calculation parameter tuning
下载PDF
Control parameter optimal tuning method based on annealing-genetic algorithm for complex electromechanical system 被引量:1
9
作者 贺建军 喻寿益 钟掘 《Journal of Central South University of Technology》 2003年第4期359-363,共5页
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that... A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters. 展开更多
关键词 GENETIC ALGORITHM SIMULATED ANNEALING ALGORITHM annealing-genetic ALGORITHM complex electro-mechanical system parameter tuning OPTIMAL control
下载PDF
A Statistical Parameter Analysis and SVM Based Fault Diagnosis Strategy for Dynamically Tuned Gyroscopes 被引量:2
10
作者 徐国平 田蔚风 +1 位作者 金志华 钱莉 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第5期592-596,共5页
Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector ... Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine (SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG. 展开更多
关键词 statistical parameter analysis (SPA) support vector machine (SVM) radial-basis function (RBF)neural network fault diagnosis dynamically tuned gyroscope
下载PDF
Proportion integral-type active disturbance rejection generalized predictive control for distillation process based on grey wolf optimization parameter tuning 被引量:1
11
作者 Jia Ren Zengqiang Chen +2 位作者 Mingwei Sun Qinglin Sun Zenghui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期234-244,共11页
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita... The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance. 展开更多
关键词 Proportion integral-type active disturbance rejection generalized predictive control Grey wolf optimization parameter tuning DISTILLATION Process control PREDICTION
下载PDF
A Two-stage Tuning Method of Servo Parameters for Feed Drives in Machine Tools 被引量:2
12
作者 ZHOU Yong PENG Fang-yu CHEN Ji-hong LI Bin 《International Journal of Plant Engineering and Management》 2007年第3期171-180,共10页
Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter ... Based on the evaluation of dynamic performance for feed drives in machine tools, this paper presents a two-stage tuning method of servo parameters. In the first stage, the evaluation of dynamic performance, parameter tuning and optimization on a mechatronic integrated system simulation platform of feed drives are performed. As a result, a servo parameter combination is acquired. In the second stage, the servo parameter combination from the first stage is set and tuned further in a real machine tool whose dynamic performance is measured and evaluated using the cross grid encoder developed by Heidenhain GmbH. A case study shows that this method simplifies the test process effectively and results in a good dynamic performance in a real machine tool. 展开更多
关键词 two-stage tuning method feed drive servo parameter tuning evaluation of dynamic performance
下载PDF
A method of tuning PID parameters for P-GMAW based on physical experiments
13
作者 林放 黄文超 +2 位作者 魏仲华 高理文 薛家祥 《China Welding》 EI CAS 2011年第1期59-63,共5页
To improve welding quality, a method of proportional-integral-differential (PlD) parameters tuning based on pulsed gas metal arc welding (P-GMAW) control was put forward. Aiming at the request of dynamic responsiv... To improve welding quality, a method of proportional-integral-differential (PlD) parameters tuning based on pulsed gas metal arc welding (P-GMAW) control was put forward. Aiming at the request of dynamic responsiveness of PGMA W constant current control, a self-developed welding waveform wavelet analyzer was employed. By tuning the proportional parameter, integration time and differential time in sequence, the optimal PID parameters could be achieved. The results showed that, due to the PID parameters tuned by this method, the welding process was stable and the weld bead appearance was nice. The requirement of dynamic responsiveness of P-GMAW constant current control was fully met. 展开更多
关键词 pulsed gas metal arc welding (p-GMAW) PID controller parameter tuning
下载PDF
Automated Arabic Text Classification Using Hyperparameter Tuned Hybrid Deep Learning Model
14
作者 Badriyya B.Al-onazi Saud S.Alotaib +4 位作者 Saeed Masoud Alshahrani Najm Alotaibi Mrim M.Alnfiai Ahmed S.Salama Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期5447-5465,共19页
The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic languag... The text classification process has been extensively investigated in various languages,especially English.Text classification models are vital in several Natural Language Processing(NLP)applications.The Arabic language has a lot of significance.For instance,it is the fourth mostly-used language on the internet and the sixth official language of theUnitedNations.However,there are few studies on the text classification process in Arabic.A few text classification studies have been published earlier in the Arabic language.In general,researchers face two challenges in the Arabic text classification process:low accuracy and high dimensionality of the features.In this study,an Automated Arabic Text Classification using Hyperparameter Tuned Hybrid Deep Learning(AATC-HTHDL)model is proposed.The major goal of the proposed AATC-HTHDL method is to identify different class labels for the Arabic text.The first step in the proposed model is to pre-process the input data to transform it into a useful format.The Term Frequency-Inverse Document Frequency(TF-IDF)model is applied to extract the feature vectors.Next,the Convolutional Neural Network with Recurrent Neural Network(CRNN)model is utilized to classify the Arabic text.In the final stage,the Crow Search Algorithm(CSA)is applied to fine-tune the CRNN model’s hyperparameters,showing the work’s novelty.The proposed AATCHTHDL model was experimentally validated under different parameters and the outcomes established the supremacy of the proposed AATC-HTHDL model over other approaches. 展开更多
关键词 Hybrid deep learning natural language processing arabic language text classification parameter tuning
下载PDF
Need for multiple biomarkers to adjust parameters of closed-loop deep brain stimulation for Parkinson's disease
15
作者 Takashi Morishita Tooru Inoue 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期747-748,共2页
Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure ... Closed-loop deep brain stimulation(DBS):DBS has been established as a surgical therapy for movement disorders and select neuropsychiatric disorders.Various efforts to improve the clinical outcomes of the procedure have been previously made.Several factors affect the DBS clinical outcomes such as lead position,programming technique, 展开更多
关键词 DBS Need for multiple biomarkers to adjust parameters of closed-loop deep brain stimulation for Parkinson’s disease deep
下载PDF
Parameter selection of support vector regression based on hybrid optimization algorithm and its application 被引量:9
16
作者 Xin WANG Chunhua YANG +1 位作者 Bin QIN Weihua GUI 《控制理论与应用(英文版)》 EI 2005年第4期371-376,共6页
Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters... Choosing optimal parameters for support vector regression (SVR) is an important step in SVR. design, which strongly affects the pefformance of SVR. In this paper, based on the analysis of influence of SVR parameters on generalization error, a new approach with two steps is proposed for selecting SVR parameters, First the kernel function and SVM parameters are optimized roughly through genetic algorithm, then the kernel parameter is finely adjusted by local linear search, This approach has been successfully applied to the prediction model of the sulfur content in hot metal. The experiment results show that the proposed approach can yield better generalization performance of SVR than other methods, 展开更多
关键词 Support vector regression parameters tuning Hybrid optimization Genetic algorithm(GA)
下载PDF
Parameter-induced stochastic resonance with a periodic signal 被引量:4
17
作者 李建龙 徐博侯 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期2867-2871,共5页
In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and r... In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter- induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters. 展开更多
关键词 tuning parameters stochastic resonance signal-to-noise ratio
下载PDF
Evidence of parameter-induced aperiodic stochastic resonance with fixed noise 被引量:1
18
作者 李建龙 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第2期340-345,共6页
Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we... Stochastic resonance (SR) is based on the cooperative effect between the stochastic dynamical system and the external forcing. As is well known, the cooperative effect is produced by adding noises. In this paper, we show the evidence that by changing the system parameters and the signal intensity, a nonlinear system in the presence of an input aperiodic signal can yield the cooperative effect, with the noise fixed. To quantify the nonlinear system output, we determine the theoretical bit error rate (BER). By numerical simulation, the validity of the theoretical derivation is checked. Besides, we show that parameter-induced SR is more realizable than SR via adding noises, especially when the noise intensity exceeds the resonance level, or when the characteristic of the noise is not known. 展开更多
关键词 aperiodic stochastic resonance tuning parameters bit error rate
下载PDF
Closed-loop identification of systems using hybrid Box–Jenkins structure and its application to PID tuning 被引量:1
19
作者 李全善 李大字 曹柳林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1997-2004,共8页
The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algori... The paper describes a closed-loop system identification procedure for hybrid continuous-time Box–Jenkins models and demonstrates how it can be used for IMC based PID controller tuning. An instrumental variable algorithm is used to identify hybrid continuous-time transfer function models of the Box–Jenkins form from discretetime prefiltered data, where the process model is a continuous-time transfer function, while the noise is represented as a discrete-time ARMA process. A novel penalized maximum-likelihood approach is used for estimating the discrete-time ARMA process and a circulatory noise elimination identification method is employed to estimate process model. The input–output data of a process are affected by additive circulatory noise in a closedloop. The noise-free input–output data of the process are obtained using the proposed method by removing these circulatory noise components. The process model can be achieved by using instrumental variable estimation method with prefiltered noise-free input–output data. The performance of the proposed hybrid parameter estimation scheme is evaluated by the Monte Carlo simulation analysis. Simulation results illustrate the efficacy of the proposed procedure. The methodology has been successfully applied in tuning of IMC based flow controller and a practical application demonstrates the applicability of the algorithm. 展开更多
关键词 Hybrid Box–Jenkins models ARMA models Instrumental variable closed-loop identification PID tuning
下载PDF
Adaptive Parallel Particle Swarm Optimization Algorithm Based on Dynamic Exchange of Control Parameters
20
作者 Masaaki Suzuki 《American Journal of Operations Research》 2016年第5期401-413,共14页
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s... Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance. 展开更多
关键词 Swarm Intelligence Particle Swarm Optimization Global Optimization Metaheuristics Adaptive parameter tuning
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部