Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop...Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.展开更多
Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an ...Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.展开更多
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and...Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.展开更多
A novel process is reported which produces an asymmetric supercapacitor through the complete recycling of end-of-life lithium ion batteries.The electrodic powder recovered by industrial scale mechanical treatment of s...A novel process is reported which produces an asymmetric supercapacitor through the complete recycling of end-of-life lithium ion batteries.The electrodic powder recovered by industrial scale mechanical treatment of spent batteries was leached and the dissolved metals were precipitated as mixed metals carbonates.Nanowires battery-type positive electrodes were produced by electrodeposition into nanoporous alumina templates from the electrolytic baths prepared by dissolution of the precipitated carbonates.The impact of the different metals contained in the electrodic powder was evaluated by benchmarking the electrochemical performances of the recovered nanowires-based electrodes against electrodes produced by using high-purity salts.Presence of inactive Cu in the nanowires lowered the final capacitance of the electrodes while Ni showed a synergistic effect with cobalt providing a higher capacitance with respect to synthetic Co electrodes.The carbonaceous solid recovered after leaching was indepth characterized and tested as negative electrode.Both the chemical and electrochemical characterization indicate that the recovered graphite is characterized by the presence of oxygen functionalities introduced by the leaching treatment.This has led to the obtainment of a recovered graphite characterized by an XPS C/O ratio,Raman spectrum and morphology close to literature reports for reduced graphene oxide.The asymmetric supercapacitor assembled using the recovered nanowires-based positive electrodes and graphite as negative electrodes has shown a specific capacitance of 42 F g^(-1), computed including the whole weight of the positive electrode and recovered graphite,providing a maximum energy density of ~9 Wh kg^(-1) and a power density of 416 W kg^(-1) at 2.5 mA cm^(-2).展开更多
The operation of an ideal heat integrated distillation column (HIDiC) is addressed. Five kinds of control configurations, i.e. single-loop control, multi-loop control, multivariable internal model control (IMC), modif...The operation of an ideal heat integrated distillation column (HIDiC) is addressed. Five kinds of control configurations, i.e. single-loop control, multi-loop control, multivariable internal model control (IMC), modified multivariable internal model control (MIMC) and nonlinear process model-based control (NPMC), are designed and applied to the process. Simulation results demonstrate that all of the above control configurations are valid for product quality control. NPMC control configuration is found to be the best one among all the alternatives. It can readily realize setpoint transitions and conduct effectively against external disturbances. MIMC control configuration ranks second in the row for its regulatory responses to feed composition disturbances with relatively extended setting time. Next comes from the multi-loop control configuration, which is more or less handicapped by its greater deviations and overshootings. IMC control configuration can not compete with the multi-loop control configuration because it is extremely sensitive to operating condition changes. Single-loop control configuration is the worst one among all the mentioned control configurations. Its responses for the uncontrolled end products are extremely sluggish.展开更多
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ...Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.展开更多
文摘Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem. A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories. At each time step, a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness. With this modification, limitations caused by a uniform inertia weight for the whole population are avoided, and the particles have enough diversity. After the effectiveness, efficiency and robustness are tested by benchmark functions, CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.
基金Supported by the National Basic Research Program of China (2010CB731800)the National Natural Science Foundation of China (60974059, 60736026, 61021063, 60904044, 61290324)Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation
文摘Closed-loop identification is important and necessary to various model-based advanced process control strategies, whose performance depends greatly on the informative property of the data set. Switching control is an important method in process control. Therefore, this paper studies the informative property of a data set in a single-input single-output (SISO) closed-loop system with a switching controller. It is proved that this data set is informative if the controller switches among at least two modes (i.e., feedback laws). Our result does not require any assumption on the way of switch and removes the constraints on the switching manner required in some classical literature. Finally, simulation case studies based on a continuous stirred-tank reactor (CSTR) process are given to validate the results.
基金National Science Foundation of China (60274032) SRFDP (20030248040) SRSP (04QMH1405)
文摘Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
文摘A novel process is reported which produces an asymmetric supercapacitor through the complete recycling of end-of-life lithium ion batteries.The electrodic powder recovered by industrial scale mechanical treatment of spent batteries was leached and the dissolved metals were precipitated as mixed metals carbonates.Nanowires battery-type positive electrodes were produced by electrodeposition into nanoporous alumina templates from the electrolytic baths prepared by dissolution of the precipitated carbonates.The impact of the different metals contained in the electrodic powder was evaluated by benchmarking the electrochemical performances of the recovered nanowires-based electrodes against electrodes produced by using high-purity salts.Presence of inactive Cu in the nanowires lowered the final capacitance of the electrodes while Ni showed a synergistic effect with cobalt providing a higher capacitance with respect to synthetic Co electrodes.The carbonaceous solid recovered after leaching was indepth characterized and tested as negative electrode.Both the chemical and electrochemical characterization indicate that the recovered graphite is characterized by the presence of oxygen functionalities introduced by the leaching treatment.This has led to the obtainment of a recovered graphite characterized by an XPS C/O ratio,Raman spectrum and morphology close to literature reports for reduced graphene oxide.The asymmetric supercapacitor assembled using the recovered nanowires-based positive electrodes and graphite as negative electrodes has shown a specific capacitance of 42 F g^(-1), computed including the whole weight of the positive electrode and recovered graphite,providing a maximum energy density of ~9 Wh kg^(-1) and a power density of 416 W kg^(-1) at 2.5 mA cm^(-2).
文摘The operation of an ideal heat integrated distillation column (HIDiC) is addressed. Five kinds of control configurations, i.e. single-loop control, multi-loop control, multivariable internal model control (IMC), modified multivariable internal model control (MIMC) and nonlinear process model-based control (NPMC), are designed and applied to the process. Simulation results demonstrate that all of the above control configurations are valid for product quality control. NPMC control configuration is found to be the best one among all the alternatives. It can readily realize setpoint transitions and conduct effectively against external disturbances. MIMC control configuration ranks second in the row for its regulatory responses to feed composition disturbances with relatively extended setting time. Next comes from the multi-loop control configuration, which is more or less handicapped by its greater deviations and overshootings. IMC control configuration can not compete with the multi-loop control configuration because it is extremely sensitive to operating condition changes. Single-loop control configuration is the worst one among all the mentioned control configurations. Its responses for the uncontrolled end products are extremely sluggish.
基金Financial support from the following projects and organisa- tions are acknowledged: the China One Thousand Talent Scheme, the National Natural Science Foundation of China (NNSFC) under its Major Research Scheme of Meso-scale Mechanism and Control in Multi-phase Reaction Processes (project reference: 91434126), the Natural Science Foundation of Guangdong Province (project reference: 2014A030313228), the UK Engineering and Physical Sciences Research Council (EPSRC) for the projects of Shape (EP/C009541) and StereoVision (EP/E045707), and the Technology Strategy Board (TSB) for the project of High Value Manufacturing CGM (TP/BD059E).
文摘Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.