期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Clothing Parsing Based on Multi-Scale Fusion and Improved Self-Attention Mechanism
1
作者 陈诺 王绍宇 +3 位作者 陆然 李文萱 覃志东 石秀金 《Journal of Donghua University(English Edition)》 CAS 2023年第6期661-666,共6页
Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.Th... Due to the lack of long-range association and spatial location information,fine details and accurate boundaries of complex clothing images cannot always be obtained by using the existing deep learning-based methods.This paper presents a convolutional structure with multi-scale fusion to optimize the step of clothing feature extraction and a self-attention module to capture long-range association information.The structure enables the self-attention mechanism to directly participate in the process of information exchange through the down-scaling projection operation of the multi-scale framework.In addition,the improved self-attention module introduces the extraction of 2-dimensional relative position information to make up for its lack of ability to extract spatial position features from clothing images.The experimental results based on the colorful fashion parsing dataset(CFPD)show that the proposed network structure achieves 53.68%mean intersection over union(mIoU)and has better performance on the clothing parsing task. 展开更多
关键词 clothing parsing convolutional neural network multi-scale fusion self-attention mechanism vision Transformer
下载PDF
Residual Network with Enhanced Positional Attention and Global Prior for Clothing Parsing 被引量:1
2
作者 WANG Shaoyu HU Yun +3 位作者 ZHU Yian YE Shaoping QIN Yanxia SHI Xiujin 《Journal of Donghua University(English Edition)》 CAS 2022年第5期505-510,共6页
Clothing parsing, also known as clothing image segmentation, is the problem of assigning a clothing category label to each pixel in clothing images. To address the lack of positional and global prior in existing cloth... Clothing parsing, also known as clothing image segmentation, is the problem of assigning a clothing category label to each pixel in clothing images. To address the lack of positional and global prior in existing clothing parsing algorithms, this paper proposes an enhanced positional attention module(EPAM) to collect positional information in the vertical direction of each pixel, and an efficient global prior module(GPM) to aggregate contextual information from different sub-regions. The EPAM and GPM based residual network(EG-ResNet) could effectively exploit the intrinsic features of clothing images while capturing information between different scales and sub-regions. Experimental results show that the proposed EG-ResNet achieves promising performance in clothing parsing of the colorful fashion parsing dataset(CFPD)(51.12% of mean Intersection over Union(mIoU) and 92.79% of pixel-wise accuracy(PA)) compared with other state-of-the-art methods. 展开更多
关键词 clothing parsing convolutional neural network positional attention global prior
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部