It is a hot issue to allocate resources using auction mechanisms in vehicular fog computing(VFC)with cloud and edge collaboration.However,most current research faces the limitation of only considering single type reso...It is a hot issue to allocate resources using auction mechanisms in vehicular fog computing(VFC)with cloud and edge collaboration.However,most current research faces the limitation of only considering single type resource allocation,which cannot satisfy the resource requirements of users.In addition,the resource requirements of users are satisfied with a fixed amount of resources during the usage time,which may result in high cost of users and even cause a waste of resources.In fact,the actual resource requirements of users may change with time.Besides,existing allocation algorithms in the VFC of cloud and edge collaboration cannot be directly applied to time-varying multidimensional resource allocation.Therefore,in order to minimize the cost of users,we propose a reverse auction mechanism for the time-varying multidimensional resource allocation problem(TMRAP)in VFC with cloud and edge collaboration based on VFC parking assistance and transform the resource allocation problem into an integer programming(IP)model.And we also design a heuristic resource allocation algorithm to approximate the solution of the model.We apply a dominant-resource-based strategy for resource allocation to improve resource utilization and obtain the lowest cost of users for resource pricing.Furthermore,we prove that the algorithm satisfies individual rationality and truthfulness,and can minimize the cost of users and improve resource utilization through comparison with other similar methods.Above all,we combine VFC smart parking assistance with reverse auction mechanisms to encourage resource providers to offer resources,so that more vehicle users can obtain services at lower prices and relieve traffic pressure.展开更多
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o...This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.展开更多
基金Supported by the National Natural Science Foundation of China(71971188)the Humanities and Social Science Fund of Ministry of Education of China(22YJCZH086)+1 种基金the Natural Science Foundation of Hebei Province(G2022203003)the S&T Program of Hebei(22550301D)。
文摘It is a hot issue to allocate resources using auction mechanisms in vehicular fog computing(VFC)with cloud and edge collaboration.However,most current research faces the limitation of only considering single type resource allocation,which cannot satisfy the resource requirements of users.In addition,the resource requirements of users are satisfied with a fixed amount of resources during the usage time,which may result in high cost of users and even cause a waste of resources.In fact,the actual resource requirements of users may change with time.Besides,existing allocation algorithms in the VFC of cloud and edge collaboration cannot be directly applied to time-varying multidimensional resource allocation.Therefore,in order to minimize the cost of users,we propose a reverse auction mechanism for the time-varying multidimensional resource allocation problem(TMRAP)in VFC with cloud and edge collaboration based on VFC parking assistance and transform the resource allocation problem into an integer programming(IP)model.And we also design a heuristic resource allocation algorithm to approximate the solution of the model.We apply a dominant-resource-based strategy for resource allocation to improve resource utilization and obtain the lowest cost of users for resource pricing.Furthermore,we prove that the algorithm satisfies individual rationality and truthfulness,and can minimize the cost of users and improve resource utilization through comparison with other similar methods.Above all,we combine VFC smart parking assistance with reverse auction mechanisms to encourage resource providers to offer resources,so that more vehicle users can obtain services at lower prices and relieve traffic pressure.
基金supported in part by National Natural Science Foundation of China (Grant No. 62101277)in part by the Natural Science Foundation of Jiangsu Province (Grant No. BK20200822)+1 种基金in part by the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 20KJB510036)in part by the Guangxi Key Laboratory of Multimedia Communications and Network Technology (Grant No. KLF-2020-03)。
文摘This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity.