期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Docurity: A New Cryptographic Primitive for Collaborative Cloud Systems
1
作者 Byeori Kim Minseong Choi +2 位作者 Taek-Young Youn Jeong Hyun Yi Haehyun Cho 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3725-3742,共18页
Recently,there has been a sudden shift from using traditional office applications to the collaborative cloud-based office suite such as Microsoft Office 365.Such cloud-based systems allow users to work together on the... Recently,there has been a sudden shift from using traditional office applications to the collaborative cloud-based office suite such as Microsoft Office 365.Such cloud-based systems allow users to work together on the same docu-ment stored in a cloud server at once,by which users can effectively collaborate with each other.However,there are security concerns unsolved in using cloud col-laboration.One of the major concerns is the security of data stored in cloud ser-vers,which comes from the fact that data that multiple users are working together cannot be stored in encrypted form because of the dynamic characteristic of cloud collaboration.In this paper,we propose a novel mode of operation,DL-ECB,for AES by which we can modify,insert,and delete the ciphertext based on changes in plaintext.Therefore,we can use encrypted data in collaborative cloud-based platforms.To demonstrate that the DL-ECB mode can preserve the confidential-ity,integrity,and auditability of data used in collaborative cloud systems from adversaries,we implement and evaluate the prototype of the DL-ECB mode. 展开更多
关键词 cloud collaboration mode of operation auditability of ciphertext
下载PDF
A Multi-Layer Collaboration Framework for Industrial Parks with 5G Vehicle-to-Everything Networks 被引量:1
2
作者 Yanjun Shi Qiaomei Han +1 位作者 Weiming Shen Xianbin Wang 《Engineering》 SCIE EI 2021年第6期818-831,共14页
The fifth-generation(5G)wireless communication networks are expected to play an essential role in the transformation of vertical industries.Among many exciting applications to be enabled by 5G,logistics tasks in indus... The fifth-generation(5G)wireless communication networks are expected to play an essential role in the transformation of vertical industries.Among many exciting applications to be enabled by 5G,logistics tasks in industry parks can be performed more efficiently via vehicle-to-everything(V2X)communications.In this paper,a multi-layer collaboration framework enabled by V2X is proposed for logistics management in industrial parks.The proposed framework includes three layers:a perception and execution layer,a logistics layer,and a configuration layer.In addition to the collaboration among these three layers,this study addresses the collaboration among devices,edge servers,and cloud services.For effective logistics in industrial parks,task collaboration is achieved through four functions:environmental perception and map construction,task allocation,path planning,and vehicle movement.To dynamically coordinate these functions,device–edge–cloud collaboration,which is supported by 5G slices and V2X communication technology,is applied.Then,the analytical target cascading method is adopted to configure and evaluate the collaboration schemes of industrial parks.Finally,a logistics analytical case study in industrial parks is employed to demonstrate the feasibility of the proposed collaboration framework. 展开更多
关键词 5G Vehicle-to-everything Industrial park LOGISTICS Device–edge–cloud collaboration Analytical target cascading
下载PDF
Cloud-Assisted Distributed Edge Brains for Multi-Cell Joint Beamforming Optimization for 6G
3
作者 Juan Deng Kaicong Tian +4 位作者 Qingbi Zheng Jielin Bai Kuo Cui Yitong Liu Guangyi Liu 《China Communications》 SCIE CSCD 2022年第3期36-49,共14页
In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of... In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected. 展开更多
关键词 artificial intelligence collaborative cloud edge centralized cloud brain decentralized edge brain 6G mobile communication
下载PDF
A Reverse Auction Mechanism for Time-Varying Multidimensional Resource Allocation in Vehicular Fog Computing with Cloud and Edge Collaboration
4
作者 Shiyong LI Yanan ZHANG Wei SUN 《Journal of Systems Science and Information》 CSCD 2023年第2期219-244,共26页
It is a hot issue to allocate resources using auction mechanisms in vehicular fog computing(VFC)with cloud and edge collaboration.However,most current research faces the limitation of only considering single type reso... It is a hot issue to allocate resources using auction mechanisms in vehicular fog computing(VFC)with cloud and edge collaboration.However,most current research faces the limitation of only considering single type resource allocation,which cannot satisfy the resource requirements of users.In addition,the resource requirements of users are satisfied with a fixed amount of resources during the usage time,which may result in high cost of users and even cause a waste of resources.In fact,the actual resource requirements of users may change with time.Besides,existing allocation algorithms in the VFC of cloud and edge collaboration cannot be directly applied to time-varying multidimensional resource allocation.Therefore,in order to minimize the cost of users,we propose a reverse auction mechanism for the time-varying multidimensional resource allocation problem(TMRAP)in VFC with cloud and edge collaboration based on VFC parking assistance and transform the resource allocation problem into an integer programming(IP)model.And we also design a heuristic resource allocation algorithm to approximate the solution of the model.We apply a dominant-resource-based strategy for resource allocation to improve resource utilization and obtain the lowest cost of users for resource pricing.Furthermore,we prove that the algorithm satisfies individual rationality and truthfulness,and can minimize the cost of users and improve resource utilization through comparison with other similar methods.Above all,we combine VFC smart parking assistance with reverse auction mechanisms to encourage resource providers to offer resources,so that more vehicle users can obtain services at lower prices and relieve traffic pressure. 展开更多
关键词 reverse auction time-varying multidimensional resource allocation resource pricing cloud and edge collaboration vehicular fog computing
原文传递
Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing 被引量:4
5
作者 Jingming Xia Peng Wang +1 位作者 Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2022年第4期244-256,共13页
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o... This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity. 展开更多
关键词 mobile edge computing MULTI-UAV collaborative cloud and edge computing deep neural network differential evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部