It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen who...It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen whose system configuration changes easily. TPM (trusted platform module) context manager is presented to carry out dynamic configuration management for virtual machine. It manages the TPM command requests and VM (virtual machine) configurations. The dynamic configuration representa- tion method based on Merkle hash tree is explicitly proposed against TCG (trusted computing group) static configuration representation. It reflects the true VM status in real time even if the configuration has changed, and it eliminates the invalidation of configuration representation, sealing storage and remote attestation. TPM context manager supports TCG storage protection, remote attestation etc, which greatly enhances the security on trusted virtualization platform.展开更多
In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many ...In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.展开更多
Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Th...Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Things and other advanced information technologies to build an economics and management ERP virtual simulation experiment teaching platform.Cloud computing and big data,virtual simulation experiment teaching resources with"resource library+project library+enterprise management simulation sandbox training"as the core can build an online and offline collaborative and practical experiment teaching platform.It is expected to achieve the ideal effect of integration of three spaces.Such as physics and resources and social digital teaching.Moreover,it can also benefit human-computer collaboration and interactive teaching and inquiry learning.展开更多
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the...In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.展开更多
Virtualization and distributed parallel architecture are typical cloud computing technologies. In the area of virtuatization technology, this article discusses physical resource pooling, resource pool management and u...Virtualization and distributed parallel architecture are typical cloud computing technologies. In the area of virtuatization technology, this article discusses physical resource pooling, resource pool management and use, cluster fault location and maintenance, resource pool grouping, and construction and application of heterogeneous virtualization platforms. In the area of distributed technology, distributed file system and KeyNalue storage engine are discussed. A solution is proposed for the host bottleneck problem, and a standard storage interface is proposed for the distributed file system. A directory-based storage scheme for Key/Value storage engine is also proposed.展开更多
IT infrastructures have been widely deployed in datacentres by cloud service providers for Infrastructure as a Service (IaaS) with Virtual Machines (VMs). With the rapid development of cloud-based tools and techniques...IT infrastructures have been widely deployed in datacentres by cloud service providers for Infrastructure as a Service (IaaS) with Virtual Machines (VMs). With the rapid development of cloud-based tools and techniques, IaaS is changing the current cloud infrastructure to meet the customer demand. In this paper, an efficient management model is presented and evaluated using our unique Trans-Atlantic high-speed optical fibre network connecting three datacentres located in Coleraine (Northern Ireland), Dublin (Ireland) and Halifax (Canada). Our work highlights the design and implementation of a management system that can dynamically create VMs upon request, process live migration and other services over the high-speed inter-networking Datacentres (DCs). The goal is to provide an efficient and intelligent on-demand management system for virtualization that can make decisions about the migration of VMs and get better utilisation of the network.展开更多
To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and m...To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and medium sized enterprises being typically not able to operate a vast staff of cloud service and IT experts. Actual state of the art cloud service design does not systematically deal with how to define, deploy and operate cross-platform capable cloud services. This is mainly due to inherent complexity of the field and differences in details between a plenty of existing public and private cloud infrastructures. One way to handle this complexity is to restrict cloud service design to a common subset of commodity features provided by existing public and private cloud infrastructures. Nevertheless these restrictions raise new service design questions and have to be answered in ongoing research in a pragmatic manner regarding the limited IT-operation capabilities of small and medium sized enterprises. By simplifying and harmonizing the use of cloud infrastructures using lightweight virtualization approaches, the transfer of cloud deployments between a variety of cloud service providers will become possible. This article will discuss several aspects like high availability, secure communication, elastic service design, transferability of services and formal descriptions of service deployments which have to be addressed and are investigated by our ongoing research.展开更多
In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, pro...In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.展开更多
基金the National High Technology Research and Development Program of China (2007AA01Z412)
文摘It is absolutely critical that trusted configuration management which significantly affects trust chain establishment, sealing storage and remote attestation, especially in trusted virtualization platform like Xen whose system configuration changes easily. TPM (trusted platform module) context manager is presented to carry out dynamic configuration management for virtual machine. It manages the TPM command requests and VM (virtual machine) configurations. The dynamic configuration representa- tion method based on Merkle hash tree is explicitly proposed against TCG (trusted computing group) static configuration representation. It reflects the true VM status in real time even if the configuration has changed, and it eliminates the invalidation of configuration representation, sealing storage and remote attestation. TPM context manager supports TCG storage protection, remote attestation etc, which greatly enhances the security on trusted virtualization platform.
文摘In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.
基金the 2020 University Innovation and Entrepreneurship Project of Guangdong University of Foreign Studies.
文摘Economic Management Professional Academic Education are increasingly becoming personalization,intelligence and application.Colleges and universities should actively use cloud computing and big data.Also Internet of Things and other advanced information technologies to build an economics and management ERP virtual simulation experiment teaching platform.Cloud computing and big data,virtual simulation experiment teaching resources with"resource library+project library+enterprise management simulation sandbox training"as the core can build an online and offline collaborative and practical experiment teaching platform.It is expected to achieve the ideal effect of integration of three spaces.Such as physics and resources and social digital teaching.Moreover,it can also benefit human-computer collaboration and interactive teaching and inquiry learning.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(20120162110061) supported by the Doctoral Programs of Ministry of Education of China+1 种基金Project(CX2014B066) supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers.
文摘Virtualization and distributed parallel architecture are typical cloud computing technologies. In the area of virtuatization technology, this article discusses physical resource pooling, resource pool management and use, cluster fault location and maintenance, resource pool grouping, and construction and application of heterogeneous virtualization platforms. In the area of distributed technology, distributed file system and KeyNalue storage engine are discussed. A solution is proposed for the host bottleneck problem, and a standard storage interface is proposed for the distributed file system. A directory-based storage scheme for Key/Value storage engine is also proposed.
文摘IT infrastructures have been widely deployed in datacentres by cloud service providers for Infrastructure as a Service (IaaS) with Virtual Machines (VMs). With the rapid development of cloud-based tools and techniques, IaaS is changing the current cloud infrastructure to meet the customer demand. In this paper, an efficient management model is presented and evaluated using our unique Trans-Atlantic high-speed optical fibre network connecting three datacentres located in Coleraine (Northern Ireland), Dublin (Ireland) and Halifax (Canada). Our work highlights the design and implementation of a management system that can dynamically create VMs upon request, process live migration and other services over the high-speed inter-networking Datacentres (DCs). The goal is to provide an efficient and intelligent on-demand management system for virtualization that can make decisions about the migration of VMs and get better utilisation of the network.
文摘To overcome vendor lock-in obstacles in public cloud computing, the capability to define transferable cloud-based services is crucial but has not yet been solved satisfactorily. This is especially true for small and medium sized enterprises being typically not able to operate a vast staff of cloud service and IT experts. Actual state of the art cloud service design does not systematically deal with how to define, deploy and operate cross-platform capable cloud services. This is mainly due to inherent complexity of the field and differences in details between a plenty of existing public and private cloud infrastructures. One way to handle this complexity is to restrict cloud service design to a common subset of commodity features provided by existing public and private cloud infrastructures. Nevertheless these restrictions raise new service design questions and have to be answered in ongoing research in a pragmatic manner regarding the limited IT-operation capabilities of small and medium sized enterprises. By simplifying and harmonizing the use of cloud infrastructures using lightweight virtualization approaches, the transfer of cloud deployments between a variety of cloud service providers will become possible. This article will discuss several aspects like high availability, secure communication, elastic service design, transferability of services and formal descriptions of service deployments which have to be addressed and are investigated by our ongoing research.
基金Supported by the National Natural Science Foundation of Heilongjiang Province (G201206)
文摘In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.