An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capa...An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capacity.However,the outsource database still has some challenges.If the service provider does not have sufficient confidence,there is the possibility of data leakage.The data may has user's privacy,so data leakage may cause data privacy leak.Based on this factor,to protect the privacy of data in the outsource database becomes very important.In the past,scholars have proposed k-anonymity to protect data privacy in the database.It lets data become anonymous to avoid data privacy leak.But k-anonymity has some problems,it is irreversible,and easier to be attacked by homogeneity attack and background knowledge attack.Later on,scholars have proposed some studies to solve homogeneity attack and background knowledge attack.But their studies still cannot recover back to the original data.In this paper,we propose a data anonymity method.It can be reversible and also prevent those two attacks.Our study is based on the proposed r-transform.It can be used on the numeric type of attributes in the outsource database.In the experiment,we discussed the time required to anonymize and recover data.Furthermore,we investigated the defense against homogeneous attack and background knowledge attack.At the end,we summarized the proposed method and future researches.展开更多
利用2007—2016年国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)、云和地球辐射能量系统(Clouds and the Earth s Radiant Energy System,CERES)和中分辨率成像光谱仪(Moderate Resolution Imaging Spe...利用2007—2016年国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)、云和地球辐射能量系统(Clouds and the Earth s Radiant Energy System,CERES)和中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)卫星反演云产品,对比分析了不同数据反演的中国地区云系结构的宏微观特征,并采用复合评价指标定量评估了不同数据之间时间和空间上的一致性。结果表明:三套卫星数据都能较好地反演出中国地区总云量呈南高北低、东高西低、夏高冬低的分布特征,但通过比较时间技巧(Temporal Skill,S_(T))及空间技巧(Spatial Skill,S_(S))复合评价指标及其各项分量发现,与MODIS相比,CERES与ISCCP数据反演的总云量时间序列演变特征明显更为一致,且其评分均有南方优于北方,夏季优于冬季的特征;进一步分析不同高度云量的S_(T)评分发现,CERES和ISCCP两套数据在南方地区的总云量差异主要来自于低云量的绝对偏差,而北方地区的偏差则同时存在于低云和中云;对比分析MODIS和CERES反演的云滴有效半径发现,高云对应的冰相云一致性较高,而中低云相对应的液相云的偏差则有夏季高于冬季的规律。针对夏季液相和冰相云滴粒径及概率密度分析则表明,相比CERES数据,MODIS对夏季液水和冰水粒子的有效半径在不同地区均有不同程度的高估,液(冰)水谱宽则更宽(窄)。展开更多
文摘An outsource database is a database service provided by cloud computing companies.Using the outsource database can reduce the hardware and software's cost and also get more efficient and reliable data processing capacity.However,the outsource database still has some challenges.If the service provider does not have sufficient confidence,there is the possibility of data leakage.The data may has user's privacy,so data leakage may cause data privacy leak.Based on this factor,to protect the privacy of data in the outsource database becomes very important.In the past,scholars have proposed k-anonymity to protect data privacy in the database.It lets data become anonymous to avoid data privacy leak.But k-anonymity has some problems,it is irreversible,and easier to be attacked by homogeneity attack and background knowledge attack.Later on,scholars have proposed some studies to solve homogeneity attack and background knowledge attack.But their studies still cannot recover back to the original data.In this paper,we propose a data anonymity method.It can be reversible and also prevent those two attacks.Our study is based on the proposed r-transform.It can be used on the numeric type of attributes in the outsource database.In the experiment,we discussed the time required to anonymize and recover data.Furthermore,we investigated the defense against homogeneous attack and background knowledge attack.At the end,we summarized the proposed method and future researches.
文摘利用2007—2016年国际卫星云气候计划(International Satellite Cloud Climatology Project,ISCCP)、云和地球辐射能量系统(Clouds and the Earth s Radiant Energy System,CERES)和中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)卫星反演云产品,对比分析了不同数据反演的中国地区云系结构的宏微观特征,并采用复合评价指标定量评估了不同数据之间时间和空间上的一致性。结果表明:三套卫星数据都能较好地反演出中国地区总云量呈南高北低、东高西低、夏高冬低的分布特征,但通过比较时间技巧(Temporal Skill,S_(T))及空间技巧(Spatial Skill,S_(S))复合评价指标及其各项分量发现,与MODIS相比,CERES与ISCCP数据反演的总云量时间序列演变特征明显更为一致,且其评分均有南方优于北方,夏季优于冬季的特征;进一步分析不同高度云量的S_(T)评分发现,CERES和ISCCP两套数据在南方地区的总云量差异主要来自于低云量的绝对偏差,而北方地区的偏差则同时存在于低云和中云;对比分析MODIS和CERES反演的云滴有效半径发现,高云对应的冰相云一致性较高,而中低云相对应的液相云的偏差则有夏季高于冬季的规律。针对夏季液相和冰相云滴粒径及概率密度分析则表明,相比CERES数据,MODIS对夏季液水和冰水粒子的有效半径在不同地区均有不同程度的高估,液(冰)水谱宽则更宽(窄)。