This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest ve...This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.展开更多
In the study of warm clouds,there are many outstanding questions.Cloud droplet size distributions are much wider,and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectati...In the study of warm clouds,there are many outstanding questions.Cloud droplet size distributions are much wider,and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations.This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation,including observational,laboratorial,numerical,and theoretical achievements.Particular attention is paid to studies by Chinese scientists since the 1950s,since most results have been published in Chinese.The review reveals that high-resolution observations and simulations,and laboratory experiments,are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.The effects of turbulent fluctuations and entrainment-mixing processes have been unrealistically separated in most theoretical studies.They could be unified by further advancement of a systems theory into a predictive theory.Developing parameterizations for the effects of fluctuations and entrainment-mixing processes is still in its infancy,and more studies are warranted.展开更多
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectra...From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.展开更多
The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parame...The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parameter in the commonly used bulk double-moment schemes, the cloud droplet spectra cannot reasonably be described during the condensation process. Therefore, a newly-developed triple-parameter condensation scheme with the shape parameter diagnosed through the number concentration, cloud water content, and reflectivity factor of cloud droplets can be applied to improve the evolution of the cloud droplet spectrum. The simulation with the new parameterization scheme was compared to those with a high-resolution Lagrangian bin scheme, the double-moment schemes in a parcel model, and the observation in a 1.5D Eulerian model that consists of two cylinders. The new scheme with the shape parameter varying with time and space can accurately simulate the evolution of the cloud droplet spectrum. Furthermore, the volume-mean radius and cloud water content simulated with the new scheme match the Lagrangian analytical solutions well, and the errors are steady, within approximately 0.2%.展开更多
Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previousl...Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.展开更多
Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under diff...Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under different aerosol conditions using three-dimensional large eddy simulations(LES).It is found that cloud droplet mean radius,standard deviation,and relative dispersion generally decrease as aerosol mixing ratio increases from 25 mg-1(clean case) to 100 mg-1(moderate case),and to 2000 mg-1(polluted case).Under all the three simulated aerosol conditions,cloud droplet mean radius and standard deviation increase with height.However,droplet relative dispersion increases with height only in the polluted case,and does not vary with height in the clean and moderate cases.The mechanisms for cloud droplet dispersion are also investigated.An additional simulation without considering droplet collision-coalescence and sedimentation under the aerosol mixing ratio of 25 mg-1 shows smaller values of droplet mean radius,standard deviation,and relative dispersion as compared to the base clean case.This indicates that droplet collision-coalescence plays an important role in broadening droplet spectra.Results also suggest that the impact of homogeneous mixing on cumulus cloud droplet spectra is significant under all the three simulated aerosol conditions.In weak mixing(strong updraft) regions where clouds are closer to be adiabatic,cloud droplets tend to have larger mean radius,smaller standard deviation,and hence smaller relative dispersion than those in stronger mixing(downdraft or weak updraft) regions.The parameterized cloud optical depth in terms of cloud liquid water content,droplet number concentration,and relative dispersion is only slightly smaller than the result calculated from detailed droplet spectra,indicating that current parameterization of cloud optical depth as used in many GCMs is plausible for low clouds.展开更多
The relative dispersion of the cloud droplet spectra or the shape parameter is usually assumed to be a constant in the two-parameter cloud microphysical scheme, or is derived through statistical analysis. However, obs...The relative dispersion of the cloud droplet spectra or the shape parameter is usually assumed to be a constant in the two-parameter cloud microphysical scheme, or is derived through statistical analysis. However, observations have revealed that the use of such methods is not applicable for all actual cases. In this study, formulas were derived based on cloud microphysics and the properties of gamma function to solve the average cloud droplet radius and the cloud droplet spectral shape parameter. The gamma distribution shape parameter, relative dispersion, and cloud droplet spectral distribution can be derived through solving the droplet spectral shape parameter equation using the average droplet radius, volume radius, and their ratio, thereby deriving an analytic solution. We further examined the equation for the droplet spectral shape parameter using the observational droplet spectral data, and results revealed the feasibility of the method. In addition, when the method was applied to the two-parameter cloud microphysical scheme of the Weather Research and Forecast(WRF) model to further examine its feasibility, the modeling results showed that it improved precipitation simulation performance, thereby indicating that it can be utilized in two-parameter cloud microphysical schemes.展开更多
Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the...Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated. The reflectivity factor calculated from aircraft measurements was compared in detail with sinmltaneous radar observations. The results showed that the two reflectivities were comparable in warm clouds, but in ice cloud there were more differences, which were probably associated with the occurrence of liquid water. The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data, and hence for cloud radar to remotely sense cloud properties. Based on the dataset collected in warm clouds, the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops. The relationship between refiectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle. In comparison with cloud droplets, the relationship for drizzle was blurred by many scatter points and thus was less evident. However, these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius. Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.展开更多
ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 ...ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 to 4600 m (0°C to -7.6°C), with liquid water content ranging from 0.01 to 0.09 g m-3. In the observed mixed-phase cloud, liquid water content exhibited a bimodal distribution, whereas the maximum ice particle concentration was located in the middle part of the cloud. The liquid and ice particle data showed significant horizontal variability on the scale of a few hundred meters. The cloud droplet concentration varied greatly over the horizontal sampling area. There was an inverse relationship between the cloud droplet concentration and ice particle concentration. A gamma distribution provided the best description of the cloud droplet spectra. The liquid droplet distributions were found to increase in both size and concentration with altitude. It was inferred from the profile of the spectra parameters that the cloud droplet sizes tend to form a quasi-monodisperse distribution. Ice particle spectra in the cloud were fitted well by an exponential distribution. Finally, a remarkable power law relationship was found between the slope (λ) and intercept (No) parameters of the exponential size distribution.展开更多
The prevailing idea so far about why the rainfall occurs was that after agglutination of water droplets with condensation nuclei, the size of the particle formed by the condensation nuclei connected with droplets of w...The prevailing idea so far about why the rainfall occurs was that after agglutination of water droplets with condensation nuclei, the size of the particle formed by the condensation nuclei connected with droplets of water increased considerably and caused its fall. This idea has led to numerous scientific publications in which empirical distribution functions of clouds’ water droplets sizes were proposed. Estimates values provided by these empirical distribution functions, in most cases, were validated by comparison with UHF Radar measurements. The condensation nuclei concept has not been sufficiently exploited and this has led meteorologists to error, in their attempt to describe the clouds, thinking that clouds were formed by liquid water droplets. Indeed, MBANE BIOUELE paradox (2005) confirms this embarrassing situation. In fact, when applying Archimedes theorem to a liquid water droplet suspended in the atmosphere, we obtain a meaningless inequality ?which makes believe that the densities of pure water in liquid and solid phases are much lower than that of the atmosphere considered at the sea level. This meaningless inequality is easy to contradict: of course, if you empty a bottle of pure liquid water in the ocean (where z is equal to 0), this water will not remain suspended in the air, i.e., application of Archimedes’ theorem allows realizing that there is no liquid (or solid) water droplet, suspended in the clouds. Indeed, all liquid (or solid) water droplets which are formed in clouds, fall under the effect of gravity and produce rains. This means that our current description of the clouds is totally wrong. In this study, we describe the clouds as a gas composed of dry air and saturated water vapor whose optical properties depend on temperature, i.e., when the temperature of a cloud decreases, the color of this gaseous system tends towards white.展开更多
基金This work was jointly supported by the 973 Project(Grant No.2005CB321703)the National Natural Science Foundation of China(Grant No.40221503)the Chinese Academy of Sciences International Partnership Creative Group entitled"The Climate System Model Development and Application Studies".
文摘This paper documents a study to examine the sensitivity to cloud droplet effective radius and liquid water path and the alleviation the energy imbalance at the top of the atmosphere and at the surface in the latest version of the Grid-point Atmospheric Model of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP) (GAMIL1.1.0). Considerable negative biases in all flux components, and thus an energy imbalance, are found in GAMIL1.1.0. In order to alleviate the energy imbalance, two modifications, namely an increase in cloud droplet effective radius and a decrease in cloud liquid water path, have been made to the cloud properties used in GAMIL. With the increased cloud droplet effective radius, the single scattering albedo of clouds is reduced, and thus the reflection of solar radiation into space by clouds is reduced and the net solar radiation flux at the top of the atmosphere is increased. With the reduced cloud optical depth, the net surface shortwave radiation flux is increased, causing a net warming over the land surface. This results in an increase in both sensible and latent heat fluxes over the land regions, which is largely balanced by the increased terrestrial radiation fluxes. Consequently, the energy balance at the top of atmosphere and at the surface is achieved with energy flux components consistent with available satellite observations.
基金supported by the National Key Research and Development Program of China[grant number 2017YFA060 4000]the China Meteorological Administration Special Public Welfare Research Fund[grant number GYHY201406001]+5 种基金the National Natural Science Foundation of China(NSFC)[grant number 91537108]the Natural Science Foundation of Jiangsu Province,China[grant number BK20160041]the U.S.Department of Energy’s BER Atmospheric System Research Program[grant number DE-SC00112704]the Six Talent Peak Project in Jiangsu,China[grant number 2015-JY-011]the 333 High-level Talents Training Project in Jiangsu[grant number BRA2016424]the NSFC[grant number 41305120]
文摘In the study of warm clouds,there are many outstanding questions.Cloud droplet size distributions are much wider,and warm rain is initiated in a shorter time and with a shallower cloud depth than theoretical expectations.This review summarizes the studies related to the effects of turbulent fluctuations and turbulent entrainment-mixing on the broadening of droplet size distributions and warm rain initiation,including observational,laboratorial,numerical,and theoretical achievements.Particular attention is paid to studies by Chinese scientists since the 1950s,since most results have been published in Chinese.The review reveals that high-resolution observations and simulations,and laboratory experiments,are needed because knowledge of the detailed physical processes involved in the effects of turbulence and entrainment-mixing on cloud microphysics still remains elusive.The effects of turbulent fluctuations and entrainment-mixing processes have been unrealistically separated in most theoretical studies.They could be unified by further advancement of a systems theory into a predictive theory.Developing parameterizations for the effects of fluctuations and entrainment-mixing processes is still in its infancy,and more studies are warranted.
基金Project supported by the Special Foundation for China Nonprofit Industry (Grant No. GYHY200706036)the National Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40825008)the National Basic Research Program of China (Grant No. 2010CB833406)
文摘From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41275147 and 41875173)the STS Program of Inner Mongolia Meteorological Service, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences and Institute of Atmospheric Physics, Chinese Academy of Sciences (Grant No. 2021CG0047)
文摘The shape parameter of the Gamma size distribution plays a key role in the evolution of the cloud droplet spectrum in the bulk parameterization schemes. However, due to the inaccurate specification of the shape parameter in the commonly used bulk double-moment schemes, the cloud droplet spectra cannot reasonably be described during the condensation process. Therefore, a newly-developed triple-parameter condensation scheme with the shape parameter diagnosed through the number concentration, cloud water content, and reflectivity factor of cloud droplets can be applied to improve the evolution of the cloud droplet spectrum. The simulation with the new parameterization scheme was compared to those with a high-resolution Lagrangian bin scheme, the double-moment schemes in a parcel model, and the observation in a 1.5D Eulerian model that consists of two cylinders. The new scheme with the shape parameter varying with time and space can accurately simulate the evolution of the cloud droplet spectrum. Furthermore, the volume-mean radius and cloud water content simulated with the new scheme match the Lagrangian analytical solutions well, and the errors are steady, within approximately 0.2%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41822504, 42175099, 42027804, 42075073 and 42075077)the National Center of Meteorology, Abu Dhabi, UAE under the UAE Research Program for Rain Enhancement Science+4 种基金LIU is supported by the U.S. Department of Energy Atmospheric System Research (ASR) Program (DE-SC00112704)Solar Energy Technologies Office (SETO) under Award 33504LUO is supported by Research Fund of Civil Aviation Flight University of China (J2022-037)LI is supported by Research Fund of Civil Aviation Flight University of China (09005001)WU is supported by Research on Key of Manmachine Ring in Plateau Flight (FZ2020ZZ03)
文摘Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.
基金Supported by the 11th Five-Year National Key Technology R&D Program of China under Grant No. 2006BAC12B003National Natural Science Foundation of China under Grant No. 40675004
文摘Cloud droplet dispersion is an important parameter in estimating aerosol indirect effect on climate in general circulation models(GCMs).This study investigates droplet dispersion in shallow cumulus clouds under different aerosol conditions using three-dimensional large eddy simulations(LES).It is found that cloud droplet mean radius,standard deviation,and relative dispersion generally decrease as aerosol mixing ratio increases from 25 mg-1(clean case) to 100 mg-1(moderate case),and to 2000 mg-1(polluted case).Under all the three simulated aerosol conditions,cloud droplet mean radius and standard deviation increase with height.However,droplet relative dispersion increases with height only in the polluted case,and does not vary with height in the clean and moderate cases.The mechanisms for cloud droplet dispersion are also investigated.An additional simulation without considering droplet collision-coalescence and sedimentation under the aerosol mixing ratio of 25 mg-1 shows smaller values of droplet mean radius,standard deviation,and relative dispersion as compared to the base clean case.This indicates that droplet collision-coalescence plays an important role in broadening droplet spectra.Results also suggest that the impact of homogeneous mixing on cumulus cloud droplet spectra is significant under all the three simulated aerosol conditions.In weak mixing(strong updraft) regions where clouds are closer to be adiabatic,cloud droplets tend to have larger mean radius,smaller standard deviation,and hence smaller relative dispersion than those in stronger mixing(downdraft or weak updraft) regions.The parameterized cloud optical depth in terms of cloud liquid water content,droplet number concentration,and relative dispersion is only slightly smaller than the result calculated from detailed droplet spectra,indicating that current parameterization of cloud optical depth as used in many GCMs is plausible for low clouds.
基金supported by National Basic Research Program of China(Grant No.2011CB403406)
文摘The relative dispersion of the cloud droplet spectra or the shape parameter is usually assumed to be a constant in the two-parameter cloud microphysical scheme, or is derived through statistical analysis. However, observations have revealed that the use of such methods is not applicable for all actual cases. In this study, formulas were derived based on cloud microphysics and the properties of gamma function to solve the average cloud droplet radius and the cloud droplet spectral shape parameter. The gamma distribution shape parameter, relative dispersion, and cloud droplet spectral distribution can be derived through solving the droplet spectral shape parameter equation using the average droplet radius, volume radius, and their ratio, thereby deriving an analytic solution. We further examined the equation for the droplet spectral shape parameter using the observational droplet spectral data, and results revealed the feasibility of the method. In addition, when the method was applied to the two-parameter cloud microphysical scheme of the Weather Research and Forecast(WRF) model to further examine its feasibility, the modeling results showed that it improved precipitation simulation performance, thereby indicating that it can be utilized in two-parameter cloud microphysical schemes.
基金supported by the National Key Program for Developing Basic Sciences under Grant 2012CB417202the National Natural Science Foundation of China under Grant Nos. 40975014, 41030962 and 41175038sponsored by the Program for Postgraduates Research Innovation of Jiangsu Higher Education Institutions (Grant No. CXZZ11-0615)
文摘Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong, Jilin, Northeast China. The aircraft provided in situ measurements of cloud droplet size distribution, while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated. The reflectivity factor calculated from aircraft measurements was compared in detail with sinmltaneous radar observations. The results showed that the two reflectivities were comparable in warm clouds, but in ice cloud there were more differences, which were probably associated with the occurrence of liquid water. The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data, and hence for cloud radar to remotely sense cloud properties. Based on the dataset collected in warm clouds, the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops. The relationship between refiectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle. In comparison with cloud droplets, the relationship for drizzle was blurred by many scatter points and thus was less evident. However, these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius. Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.
基金supported by the National Natural Science Foundation of China (Grant No. 41175120)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-203)
文摘ABSTRACT This paper reports airborne measurements of midlatitude altostratus clouds observed over Zhengzhou, Henan Province, China on 3 March 2007. The case demonstrates mixed-phase conditions at altitudes from 3200 to 4600 m (0°C to -7.6°C), with liquid water content ranging from 0.01 to 0.09 g m-3. In the observed mixed-phase cloud, liquid water content exhibited a bimodal distribution, whereas the maximum ice particle concentration was located in the middle part of the cloud. The liquid and ice particle data showed significant horizontal variability on the scale of a few hundred meters. The cloud droplet concentration varied greatly over the horizontal sampling area. There was an inverse relationship between the cloud droplet concentration and ice particle concentration. A gamma distribution provided the best description of the cloud droplet spectra. The liquid droplet distributions were found to increase in both size and concentration with altitude. It was inferred from the profile of the spectra parameters that the cloud droplet sizes tend to form a quasi-monodisperse distribution. Ice particle spectra in the cloud were fitted well by an exponential distribution. Finally, a remarkable power law relationship was found between the slope (λ) and intercept (No) parameters of the exponential size distribution.
文摘The prevailing idea so far about why the rainfall occurs was that after agglutination of water droplets with condensation nuclei, the size of the particle formed by the condensation nuclei connected with droplets of water increased considerably and caused its fall. This idea has led to numerous scientific publications in which empirical distribution functions of clouds’ water droplets sizes were proposed. Estimates values provided by these empirical distribution functions, in most cases, were validated by comparison with UHF Radar measurements. The condensation nuclei concept has not been sufficiently exploited and this has led meteorologists to error, in their attempt to describe the clouds, thinking that clouds were formed by liquid water droplets. Indeed, MBANE BIOUELE paradox (2005) confirms this embarrassing situation. In fact, when applying Archimedes theorem to a liquid water droplet suspended in the atmosphere, we obtain a meaningless inequality ?which makes believe that the densities of pure water in liquid and solid phases are much lower than that of the atmosphere considered at the sea level. This meaningless inequality is easy to contradict: of course, if you empty a bottle of pure liquid water in the ocean (where z is equal to 0), this water will not remain suspended in the air, i.e., application of Archimedes’ theorem allows realizing that there is no liquid (or solid) water droplet, suspended in the clouds. Indeed, all liquid (or solid) water droplets which are formed in clouds, fall under the effect of gravity and produce rains. This means that our current description of the clouds is totally wrong. In this study, we describe the clouds as a gas composed of dry air and saturated water vapor whose optical properties depend on temperature, i.e., when the temperature of a cloud decreases, the color of this gaseous system tends towards white.