期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Relationships between Cloud Droplet Spectral Relative Dispersion and Entrainment Rate and Their Impacting Factors
1
作者 Shi LUO Chunsong LU +9 位作者 Yangang LIU Yaohui LI Wenhua GAO Yujun QIU Xiaoqi XU Junjun LI Lei ZHU Yuan WANG Junjie WU Xinlin YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2087-2106,I0016-I0019,共24页
Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previousl... Cloud microphysical properties are significantly affected by entrainment and mixing processes.However,it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution.Previously,the relationship between relative dispersion and entrainment rate was found to be positive or negative.To reconcile the contrasting relationships,the Explicit Mixing Parcel Model is used to determine the underlying mechanisms.When evaporation is dominated by small droplets,and the entrained environmental air is further saturated during mixing,the relationship is negative.However,when the evaporation of big droplets is dominant,the relationship is positive.Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets.However,if cloud condensation nuclei are not entrained,the relationship is positive.If cloud condensation nuclei are entrained,the relationship is dependent on many other factors.High values of vertical velocity,relative humidity of environmental air,and liquid water content,and low values of droplet number concentration,are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets.Further,the signs of the relationship are not strongly affected by the turbulence dissipation rate,but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate.A conceptual model is proposed to reconcile the contrasting relationships.This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms. 展开更多
关键词 cloudS entrainment rate relative dispersion of cloud droplet size distribution mixing and evaporation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部