Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height a...Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding obser...Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.展开更多
The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-...The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-based millimeter radar at two sites: Yangbajing, Tibet, China (YBJ), and the Institute of Atmospheric Physics (IAP), Beijing, China. The comparison shows that Himawari-8 missed more CTHs at night than FY-4A, especially at YBJ. It is found that the CTH difference (CTHD;radar CTH minus satellite CTH) for FY-4A and Himawari-8 is 0.06 ± 1.90 km and −0.02 ± 2.40 km at YBJ respectively, and that is 0.93 ± 2.24 km and 0.99 ± 2.37 km at IAP respectively. The discrepancy between the satellites and radar at IAP is larger than that at YBJ. Both satellites show better performance for mid-level and low-level clouds than for high-level clouds at the two sites. The retrievals from FY-4A agree well with those from Himawari-8, with a mean difference of 0.08 km at YBJ and 0.06 km at IAP. It is found that the CTHD decreases as the cloud depth increases at both sites. However, the CTHD has no obvious dependence on cloud layers and fractions. Investigations show that aerosol concentration has little impact on the CTHD. For high and thin clouds, the CTHD increases gradually with the increase of the surface temperature, which might be a key factor causing the regional discrepancy between IAP and YBJ.展开更多
The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde ...The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.展开更多
In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(Septembe...In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.展开更多
In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, c...In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, conducted contrast numerical experiments of assimilating the CDW data before and after reassignment to examine the impacts on the forecast of the track of Typhoon Chanthu(1003) from 00:00(Coordinated Universal Time) 21 July to 00:00 UTC23 July, 2010. The analysis results of the CDW data indicate that the number of CDWs is mainly distributed in the midand upper-troposphere above 500 h Pa, with the maximum number at about 300 h Pa. The height reassigning method mentioned in this work may update the height effectively, and the CDW data are distributed reasonably and no obvious contradiction occurs in the horizontal direction after height reassignment. After assimilating the height-reassigned CDW data, especially the water vapor CDW data, the initial wind field around Typhoon Chanthu(1003) became more reasonable, and then the steering current leading the typhoon to move to the correct location became stronger. As a result, the numerical track predictions are improved.展开更多
Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the mi...Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu-ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The comparison shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.展开更多
A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling ...A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling linear polarizing radiance at top-of-atmosphere are analyzed, which show that the upwelling linear polarizing radiance varies remarkably with the cloud top height, but has negligible sensitivity with cloud albedo and aerosol scattering above the cloud layer. Based on this property, a cloud top height retrieval algorithm using polarizing remote sensing was developed. The algorithm has been applied to the polarizing remote sensing data of Polarization and Directionality of the Earth's Reflectances-2 (POLDER-2). The retrieved cloud top height from POLDER-2 compares well with the Moderate Resolution Imaging Spectroradiometer (MODIS) operational product with a bias of 0.83 km and standard deviation of 1.56 km.展开更多
基金funded by National Natural Science Foundation of China(40830102 and 41205016)
文摘Cloud-radiation interaction has a large impact on the Earth's weather and climate change, and clouds with different heights cause different radiative forcing. Thus, the information on the statistics of cloud height and its variation in space and time is very important to global climate change studies. In this paper, cloud top height (CTH), cloud base height (CBH) and cloud thickness over regions of the Tibetan Plateau, south slope of the plateau and South Asian Monsoon are analyzed based on CloudSat data during the period from June 2006 to December 2007. The results show that frequency of CTH and CBH in unit area over the studied regions have certain temporal-spatial continuity. The CTH and CBH of different cloud types have different variation scopes, and their seasonal variations are distinct. Cloud thickness is large (small) in summer (winter), and the percentages of different cloud types also have certain regularity.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金the Ministry of Science and Technology of China (Grant Nos. 2017YFC1501701, 2017YFC1501401, 2017YFA0603501 and 2016YFA0600403)the National Natural Science Foundation of China (Grant Nos. 91544217, 41771399 and 41471301)+1 种基金the Chinese Academy of Meteorological Sciences (Grant Nos. 2017Z005 and 2017R001)the Fundamental Research Funds for the Central Universities (Grant No. 2017STUD17)
文摘Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.
基金This work was funded by the National Natural Science Found-ation of China(Grant Nos.41775032 and 41275040).
文摘The accuracy of passive satellite cloud top height (CTH) retrieval shows regional dependence. This paper assesses the CTH derived from the FY-4A and Himawari-8 satellites through comparison with those from the ground-based millimeter radar at two sites: Yangbajing, Tibet, China (YBJ), and the Institute of Atmospheric Physics (IAP), Beijing, China. The comparison shows that Himawari-8 missed more CTHs at night than FY-4A, especially at YBJ. It is found that the CTH difference (CTHD;radar CTH minus satellite CTH) for FY-4A and Himawari-8 is 0.06 ± 1.90 km and −0.02 ± 2.40 km at YBJ respectively, and that is 0.93 ± 2.24 km and 0.99 ± 2.37 km at IAP respectively. The discrepancy between the satellites and radar at IAP is larger than that at YBJ. Both satellites show better performance for mid-level and low-level clouds than for high-level clouds at the two sites. The retrievals from FY-4A agree well with those from Himawari-8, with a mean difference of 0.08 km at YBJ and 0.06 km at IAP. It is found that the CTHD decreases as the cloud depth increases at both sites. However, the CTHD has no obvious dependence on cloud layers and fractions. Investigations show that aerosol concentration has little impact on the CTHD. For high and thin clouds, the CTHD increases gradually with the increase of the surface temperature, which might be a key factor causing the regional discrepancy between IAP and YBJ.
基金support from the National Key R&D Program of China under Grants Nos.2017YFC1501401 and 2017YFC0212803the National Natural Science Foundation under Grant No.41771399the Chinese Academy of Meteorological Sciences under Grant No.2018Y014。
文摘The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.
基金supported by the principal project, “Development and application of technology for weather forecasting (NIMR-2012-B-1)” of the National Institute of Meteorological Sciences of the Korea Meteorological Administration
文摘In this study,cloud base height(CBH) and cloud top height(CTH) observed by the Ka-band(33.44 GHz) cloud radar at the Boseong National Center for Intensive Observation of Severe Weather during fall 2013(September-November) were verified and corrected.For comparative verification,CBH and CTH were obtained using a ceilometer(CL51) and the Communication,Ocean and Meteorological Satellite(COMS).During rainfall,the CBH and CTH observed by the cloud radar were lower than observed by the ceilometer and COMS because of signal attenuation due to raindrops,and this difference increased with rainfall intensity.During dry periods,however,the CBH and CTH observed by the cloud radar,ceilometer,and COMS were similar.Thin and low-density clouds were observed more effectively by the cloud radar compared with the ceilometer and COMS.In cases of rainfall or missing cloud radar data,the ceilometer and COMS data were proven effective in correcting or compensating the cloud radar data.These corrected cloud data were used to classify cloud types,which revealed that low clouds occurred most frequently.
基金Specialized Science Project for Public Welfare Industries(Metrological Sector)(GYHY201206010,GYHY201406009)Science and Technology Planning Project for Guangdong Province(2012A061400012)+3 种基金Program for the 12th Five-Year Economic Development(2012BAC22B00)Natural Science Foundation of China(41075083)Program for Integration and Application of Key Meteorological Techniques from CMA(CMAGJ2012M36)Project from Guangdong Meteorological Bureau(2013A04)
文摘In this paper, we first analyzed cloud drift wind(CDW) data distribution in the vertical direction, and then reassigned the height of every CDW in the research domain in terms of background information, and finally, conducted contrast numerical experiments of assimilating the CDW data before and after reassignment to examine the impacts on the forecast of the track of Typhoon Chanthu(1003) from 00:00(Coordinated Universal Time) 21 July to 00:00 UTC23 July, 2010. The analysis results of the CDW data indicate that the number of CDWs is mainly distributed in the midand upper-troposphere above 500 h Pa, with the maximum number at about 300 h Pa. The height reassigning method mentioned in this work may update the height effectively, and the CDW data are distributed reasonably and no obvious contradiction occurs in the horizontal direction after height reassignment. After assimilating the height-reassigned CDW data, especially the water vapor CDW data, the initial wind field around Typhoon Chanthu(1003) became more reasonable, and then the steering current leading the typhoon to move to the correct location became stronger. As a result, the numerical track predictions are improved.
基金supported by the National Natural Science Foundation of China (Grant No. 40710059003)
文摘Based on ground-based Atmospheric Emitted Radiance Interferometer (AERI) observations in Shouxian, Anhui province, China, the authors retrieve the cloud base height (CBH) and effective cloud emissivity by using the minimum root-mean-square difference method. This method was originally developed for satellite remote sensing. The high-temporal-resolution retrieval results can depict the trivial variations of the zenith clouds continu-ously. The retrieval results are evaluated by comparing them with observations by the cloud radar. The comparison shows that the retrieval bias is smaller for the middle and low cloud, especially for the opaque cloud. When two layers of clouds exist, the retrieval results reflect the weighting radiative contribution of the multi-layer cloud. The retrieval accuracy is affected by uncertainties of the AERI radiances and sounding profiles, in which the role of uncertainty in the temperature profile is dominant.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2009CB421202)the National Natural Science Foundation of China (Grant No. 40706061)the National High Technology Research and Development Program of China (863 Program, Grant Nos. 2007AA12Z137 and 2008AA09Z104)
文摘A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling linear polarizing radiance at top-of-atmosphere are analyzed, which show that the upwelling linear polarizing radiance varies remarkably with the cloud top height, but has negligible sensitivity with cloud albedo and aerosol scattering above the cloud layer. Based on this property, a cloud top height retrieval algorithm using polarizing remote sensing was developed. The algorithm has been applied to the polarizing remote sensing data of Polarization and Directionality of the Earth's Reflectances-2 (POLDER-2). The retrieved cloud top height from POLDER-2 compares well with the Moderate Resolution Imaging Spectroradiometer (MODIS) operational product with a bias of 0.83 km and standard deviation of 1.56 km.