We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). ...We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). Our optical gri photometry data were obtained from the recently finished Purple Mountain Observatory Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC).About 81% of our sample fall into the Stage II phase which is characterized by having optically thick disks, while 14% into the Stage I phase characterized by having significant infalling envelopes, and the remaining 5% into the Stage Ⅲ phase characterized by having optically thin disks. The median stellar age and mass of the Perseus YSOs are 3.1 Myr and 0.3 M⊙ respectively. By exploring the relationships among the turnoff wave bands λturnoff(longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index αexcess as determined for λ 〉 λturnoff, and the disk inner radius Rin(determined from SED modeling) for YSOs at different evolutionary stages, we found that the median and standard deviation of αexcess for YSOs with optically thick disks tend to increase withλturnoff, especially at λturnoff ≥5.8 μm, whereas the median fractional dust luminosities Ldust/L★ tend to decrease with increasing λturnoff. This points to an inside-out process of disk clearing for small dust grains. Moreover, a positive correlation between αexcess and Rin was found at α〉excess ~ 0 and R〉in~ 10 × the dust sublimation radius Rsub, irrespective of λturnoff, Ldust/L★ and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing of small dust grains or has little appreciable influence on the spectral slopes at λ〈~ 24 μm. About 23% of our YSO disks are classified as transitional disks, which haveλturnoff ≥ 5.8 μm and Ldust/L★ 〉 10-3. The transitional disks and full disks occupy distinctly different regions on the Ldust/L★ vs. αexcess diagram. Taking Ldust/L★ as an approximate discriminator of disks with(〉0.1) and without(〈0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction with giant planets respectively. None of our transitional disks have αexcess(〈0.0) or Ldust/L★(〉0.1) values that would otherwise be suggestive of disk clearing dominanted by grain growth.展开更多
We report on a study of the molecular cloud S64 with observations at millimeter wavelengths of multiple molecular lines of CO isotopes. A weak outflow is found, and its physical parameters are estimated. The departure...We report on a study of the molecular cloud S64 with observations at millimeter wavelengths of multiple molecular lines of CO isotopes. A weak outflow is found, and its physical parameters are estimated. The departure of the core of S64 from the S64 HII region indicates that there are still other star formation activities in that region.展开更多
Using the 13.7m radio telescope at Delingha, the millimeter-wave radioobservatory of Purple Mountain Observatory, we made mapping observations in ^(12)CO J = 1 - 0 linetowards IRAS 05417+0907, located in the bright-ri...Using the 13.7m radio telescope at Delingha, the millimeter-wave radioobservatory of Purple Mountain Observatory, we made mapping observations in ^(12)CO J = 1 - 0 linetowards IRAS 05417+0907, located in the bright-rimmed cloud (BRC) BRC18. We used a 7 x 7 grid with1' spacing, a finer and larger grid than the one used by Myers et al. Our results show that there isa bipolar outflow near IRAS 05417+0907. Combining with the observations at other wave bands, wefind that the star formation process in this region is triggered by radiation-driven implosion. Thesignificant difference between the masses of BRC18 and the cores and the relatively large ratio ofassociated source bolometric luminosity to the mass show that the star formation in BRC18 may betaking place in a sequence.展开更多
We present high angular resolution images of both NH3 (1, 1) and (2, 2) lines toward NGC 7538 IRS 1. The density and velocity-position plots have been used to study the interaction among the outflows, winds and their ...We present high angular resolution images of both NH3 (1, 1) and (2, 2) lines toward NGC 7538 IRS 1. The density and velocity-position plots have been used to study the interaction among the outflows, winds and their environment. For the first time we have found an expanding half-shell of molecular gas around the HII region associated with IRS 1, which may be produced by the interaction of the bipolar outflows and the winds originating in IRS 1-3, and optical HII region NGC 7538 with ambient molecular gas.展开更多
For the first time, the OMC-2/3 region was mapped in C2H (1–0), HC3N (10–9) and HNC (1–0) lines. In general, the emissions from all the three molecular species reveal an extended filamentary structure. The di...For the first time, the OMC-2/3 region was mapped in C2H (1–0), HC3N (10–9) and HNC (1–0) lines. In general, the emissions from all the three molecular species reveal an extended filamentary structure. The distribution of C2H cores almost follows that of the 1300μm condensations, which might suggest that C2H is a good tracer to study the core structure of molecular clouds. The core masses traced by HNC are rather ?at, ranging from 18.8 to 49.5 M , while also presenting a large span for those from C2H, ranging from 6.4 to 36.0 M . The line widths of both HNC and C2H look very similar, and both are wider than that of HC3N. The line widths of the three lines are all wider than those from dark clouds, implying that the former is more active than the latter, and has larger turbulence caused by winds and UV radiation from the surrounding massive stars.展开更多
Based on a multiwavelength study, the interstellar medium and young stel- lar objects (YSOs) around the H II region Sh2-82 have been analyzed. Two molecular clumps were found from the archival data of the Galactic R...Based on a multiwavelength study, the interstellar medium and young stel- lar objects (YSOs) around the H II region Sh2-82 have been analyzed. Two molecular clumps were found from the archival data of the Galactic Ring Survey, and using the Two Micron All-Sky Survey catalog, we found two corresponding young clusters embedded in the molecular clumps. The very good relations between CO emission, infrared shells and YSOs suggest that it is probably a triggered star formation region from the expansion of Sh2-82. We further used the data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire from Spitzer to study the YSOs within the two clumps, confirming star formation in this region. By spectral energy distribution fits to each YSO candidate with infrared excess, we derived the slope of the initial mass function. Finally, comparing the H II region's dynamical age and the fragmenta- tion time of the molecular shell, we discard the "collect and collapse" process as being the triggering mechanism for YSO formation. Sh2-82 can be a mixture of other pro- cesses such as radiative-driven implosion and/or collisions with pre-existing clumps.展开更多
The distribution of dense molecular gas around the supernova rem- nant G40.5-0.5 has been investigated by radio spectroscopic observations in the CO (J=1 - 0) transition. The molecular gas is found to extend over th...The distribution of dense molecular gas around the supernova rem- nant G40.5-0.5 has been investigated by radio spectroscopic observations in the CO (J=1 - 0) transition. The molecular gas is found to extend over the entire region of G40.5-0.5. A molecular shell, with a diameter of ~ 26′, coincides with the ionized gas as revealed by the cm-radio observations. This coincidence, along with the velocity discontinuity following the shell, provides direct evidence for interaction between the ionized gas and the dense molecular gas. No clear evidence for cosmic-ray accelera- tion can be identified from this SNR as previously suggested, due to positional uncertainty in relating the SNR shell defined by CO to the EGRET gamma-ray sources, GRO J1904+06, from the gamma-ray observations.展开更多
The first mapping observations of the bipolar HII region S106 in HCN J = 3 - 2 line were made by KOSMA submillimeter telescope in April, 2004. The results show that there is a bipolar outflow centered on the high-mass...The first mapping observations of the bipolar HII region S106 in HCN J = 3 - 2 line were made by KOSMA submillimeter telescope in April, 2004. The results show that there is a bipolar outflow centered on the high-mass star S106 IRS4 and that the flat structure of molecular cloud core is perpendicular to the axis of the outflow. This image roughly corresponds to the optical image where a dark lane bisects the bipolar HII region. Together with the optical, infrared and radio data, we conclude that the central UC HII region and molecular outflow formed before the two lobes of the bipolar HII region, and that a neutral disk is responsible for the bipolar HII region and the outflow.展开更多
基金support of the National Natural Science Foundation of China (NSFC, Grant No. 11390373)HXZ acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2013M530008)+1 种基金the CAS-CONICYT Postdoctoral Fellowship, administered by the Chinese Academy of Sciences South America Center for Astronomy (CASSACA)MF acknowledges the NSFC (Grant No. 11203081)
文摘We investigated the evolutionary stages and disk properties of 211 young stellar objects(YSOs) across the Perseus cloud by modeling their broadband optical to mid-infrared(IR) spectral energy distribution(SED). Our optical gri photometry data were obtained from the recently finished Purple Mountain Observatory Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center(XSTPS-GAC).About 81% of our sample fall into the Stage II phase which is characterized by having optically thick disks, while 14% into the Stage I phase characterized by having significant infalling envelopes, and the remaining 5% into the Stage Ⅲ phase characterized by having optically thin disks. The median stellar age and mass of the Perseus YSOs are 3.1 Myr and 0.3 M⊙ respectively. By exploring the relationships among the turnoff wave bands λturnoff(longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index αexcess as determined for λ 〉 λturnoff, and the disk inner radius Rin(determined from SED modeling) for YSOs at different evolutionary stages, we found that the median and standard deviation of αexcess for YSOs with optically thick disks tend to increase withλturnoff, especially at λturnoff ≥5.8 μm, whereas the median fractional dust luminosities Ldust/L★ tend to decrease with increasing λturnoff. This points to an inside-out process of disk clearing for small dust grains. Moreover, a positive correlation between αexcess and Rin was found at α〉excess ~ 0 and R〉in~ 10 × the dust sublimation radius Rsub, irrespective of λturnoff, Ldust/L★ and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing of small dust grains or has little appreciable influence on the spectral slopes at λ〈~ 24 μm. About 23% of our YSO disks are classified as transitional disks, which haveλturnoff ≥ 5.8 μm and Ldust/L★ 〉 10-3. The transitional disks and full disks occupy distinctly different regions on the Ldust/L★ vs. αexcess diagram. Taking Ldust/L★ as an approximate discriminator of disks with(〉0.1) and without(〈0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction with giant planets respectively. None of our transitional disks have αexcess(〈0.0) or Ldust/L★(〉0.1) values that would otherwise be suggestive of disk clearing dominanted by grain growth.
基金Supported by the National Natural Science Foundation of China
文摘We report on a study of the molecular cloud S64 with observations at millimeter wavelengths of multiple molecular lines of CO isotopes. A weak outflow is found, and its physical parameters are estimated. The departure of the core of S64 from the S64 HII region indicates that there are still other star formation activities in that region.
基金Supported by the National Natural Science Foundation of China. This project was supported by G1999075405 of NKBRSF, 10128306 10133020 of NSFC.
文摘Using the 13.7m radio telescope at Delingha, the millimeter-wave radioobservatory of Purple Mountain Observatory, we made mapping observations in ^(12)CO J = 1 - 0 linetowards IRAS 05417+0907, located in the bright-rimmed cloud (BRC) BRC18. We used a 7 x 7 grid with1' spacing, a finer and larger grid than the one used by Myers et al. Our results show that there isa bipolar outflow near IRAS 05417+0907. Combining with the observations at other wave bands, wefind that the star formation process in this region is triggered by radiation-driven implosion. Thesignificant difference between the masses of BRC18 and the cores and the relatively large ratio ofassociated source bolometric luminosity to the mass show that the star formation in BRC18 may betaking place in a sequence.
基金Supported by the National Natural Science Foundation of China.
文摘We present high angular resolution images of both NH3 (1, 1) and (2, 2) lines toward NGC 7538 IRS 1. The density and velocity-position plots have been used to study the interaction among the outflows, winds and their environment. For the first time we have found an expanding half-shell of molecular gas around the HII region associated with IRS 1, which may be produced by the interaction of the bipolar outflows and the winds originating in IRS 1-3, and optical HII region NGC 7538 with ambient molecular gas.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11003046, 11073054, 10733030 and 10621303)the National Basic Research Program of China (973 Program, Grant 2007CB815403)
文摘For the first time, the OMC-2/3 region was mapped in C2H (1–0), HC3N (10–9) and HNC (1–0) lines. In general, the emissions from all the three molecular species reveal an extended filamentary structure. The distribution of C2H cores almost follows that of the 1300μm condensations, which might suggest that C2H is a good tracer to study the core structure of molecular clouds. The core masses traced by HNC are rather ?at, ranging from 18.8 to 49.5 M , while also presenting a large span for those from C2H, ranging from 6.4 to 36.0 M . The line widths of both HNC and C2H look very similar, and both are wider than that of HC3N. The line widths of the three lines are all wider than those from dark clouds, implying that the former is more active than the latter, and has larger turbulence caused by winds and UV radiation from the surrounding massive stars.
基金funded by the National Science Foundation undergrants AST-9800334,AST-0098562,AST-0100793,AST-0228993,& AST-0507657
文摘Based on a multiwavelength study, the interstellar medium and young stel- lar objects (YSOs) around the H II region Sh2-82 have been analyzed. Two molecular clumps were found from the archival data of the Galactic Ring Survey, and using the Two Micron All-Sky Survey catalog, we found two corresponding young clusters embedded in the molecular clumps. The very good relations between CO emission, infrared shells and YSOs suggest that it is probably a triggered star formation region from the expansion of Sh2-82. We further used the data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire from Spitzer to study the YSOs within the two clumps, confirming star formation in this region. By spectral energy distribution fits to each YSO candidate with infrared excess, we derived the slope of the initial mass function. Finally, comparing the H II region's dynamical age and the fragmenta- tion time of the molecular shell, we discard the "collect and collapse" process as being the triggering mechanism for YSO formation. Sh2-82 can be a mixture of other pro- cesses such as radiative-driven implosion and/or collisions with pre-existing clumps.
基金Supported by the National Natural Science Foundation of China.
文摘The distribution of dense molecular gas around the supernova rem- nant G40.5-0.5 has been investigated by radio spectroscopic observations in the CO (J=1 - 0) transition. The molecular gas is found to extend over the entire region of G40.5-0.5. A molecular shell, with a diameter of ~ 26′, coincides with the ionized gas as revealed by the cm-radio observations. This coincidence, along with the velocity discontinuity following the shell, provides direct evidence for interaction between the ionized gas and the dense molecular gas. No clear evidence for cosmic-ray accelera- tion can be identified from this SNR as previously suggested, due to positional uncertainty in relating the SNR shell defined by CO to the EGRET gamma-ray sources, GRO J1904+06, from the gamma-ray observations.
文摘The first mapping observations of the bipolar HII region S106 in HCN J = 3 - 2 line were made by KOSMA submillimeter telescope in April, 2004. The results show that there is a bipolar outflow centered on the high-mass star S106 IRS4 and that the flat structure of molecular cloud core is perpendicular to the axis of the outflow. This image roughly corresponds to the optical image where a dark lane bisects the bipolar HII region. Together with the optical, infrared and radio data, we conclude that the central UC HII region and molecular outflow formed before the two lobes of the bipolar HII region, and that a neutral disk is responsible for the bipolar HII region and the outflow.