This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine ...This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.展开更多
Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logi...Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.展开更多
This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-ba...This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.展开更多
In the EU Horizon 2020 Shift2Rail MultiAnnual Action Plan, the challenge of railway maintenance is generating knowledge from data and/or information. Therefore, we promote a novel concept called"IN2CLOUD," w...In the EU Horizon 2020 Shift2Rail MultiAnnual Action Plan, the challenge of railway maintenance is generating knowledge from data and/or information. Therefore, we promote a novel concept called"IN2CLOUD," which comprises three sub-concepts, to address this challenge: 1) A hybrid cloud, 2) an intelligent cloud with hybrid cloud learning, and 3) collaborative management using asset-related data acquired from the intelligent hybrid cloud. The concept is developed under the assumption that organizations want/need to learn from each other(including domain knowledge and experience)but do not want to share their raw data or information.IN2CLOUD will help the movement of railway industry systems from "local" to "global" optimization in a collaborative way. The development of cutting-edge intelligent hybrid cloud-based solutions, including information technology(IT) solutions and related methodologies, will enhance business security, economic sustainability, and decision support in the field of intelligent asset management of railway assets.展开更多
文摘This work surveys and illustrates multiple open challenges in the field of industrial Internet of Things(IoT)-based big data management and analysis in cloud environments.Challenges arising from the fields of machine learning in cloud infrastructures,artificial intelligence techniques for big data analytics in cloud environments,and federated learning cloud systems are elucidated.Additionally,reinforcement learning,which is a novel technique that allows large cloud-based data centers,to allocate more energy-efficient resources is examined.Moreover,we propose an architecture that attempts to combine the features offered by several cloud providers to achieve an energy-efficient industrial IoT-based big data management framework(EEIBDM)established outside of every user in the cloud.IoT data can be integrated with techniques such as reinforcement and federated learning to achieve a digital twin scenario for the virtual representation of industrial IoT-based big data of machines and room tem-peratures.Furthermore,we propose an algorithm for determining the energy consumption of the infrastructure by evaluating the EEIBDM framework.Finally,future directions for the expansion of this research are discussed.
基金supported in part by National Key Research and Development Program under Grant No. 2016YFC0803206China Postdoctoral Science Foundation under Grant No.2016M600972
文摘Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.
基金supported in part by the National Basic Research Program(973 Program,No.2015CB352400)NSFC under grant U1401258U.S NSF under grant CCF-1016966
文摘This paper describes the fundamentals of cloud computing and current big-data key technologies. We categorize big-da- ta processing as batch-based, stream-based, graph-based, DAG-based, interactive-based, or visual-based according to the processing technique. We highlight the strengths and weaknesses of various big-data cloud processing techniques in order to help the big-data community select the appropri- ate processing technique. We also provide big data research challenges and future directions in aspect to transportation management systems.
基金Lulea Railway Research Centre (Jarnvagstekniskt Centrum, Sweden)Swedish Transport Administration (Trafikverket) for initiating the research study and providing financial supportpartly supported by NSFC under a key project (Grand No. 71731008)
文摘In the EU Horizon 2020 Shift2Rail MultiAnnual Action Plan, the challenge of railway maintenance is generating knowledge from data and/or information. Therefore, we promote a novel concept called"IN2CLOUD," which comprises three sub-concepts, to address this challenge: 1) A hybrid cloud, 2) an intelligent cloud with hybrid cloud learning, and 3) collaborative management using asset-related data acquired from the intelligent hybrid cloud. The concept is developed under the assumption that organizations want/need to learn from each other(including domain knowledge and experience)but do not want to share their raw data or information.IN2CLOUD will help the movement of railway industry systems from "local" to "global" optimization in a collaborative way. The development of cutting-edge intelligent hybrid cloud-based solutions, including information technology(IT) solutions and related methodologies, will enhance business security, economic sustainability, and decision support in the field of intelligent asset management of railway assets.