In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network in...In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network information security,such as information leakage and virus invasions,have become increasingly prominent.Consequently,there is a pressing need for the implementation of effective network security measures.This paper aims to provide a comprehensive summary and analysis of the challenges associated with computer network information security processing.It delves into the core concepts and characteristics of big data technology,exploring its potential as a solution.The study further scrutinizes the application strategy of big data technology in addressing the aforementioned security issues within computer networks.The insights presented in this paper are intended to serve as a valuable reference for individuals involved in the relevant fields,offering guidance on effective approaches to enhance computer network information security through the application of big data technology.展开更多
Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings ...Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.展开更多
The present research study proposed some of the big data usage perspectives for testing either they have a role in creating information security concern or not.The researchers first dig out some of the theoretical sup...The present research study proposed some of the big data usage perspectives for testing either they have a role in creating information security concern or not.The researchers first dig out some of the theoretical support for filling the gap regarding big data and information security bridge that was previously noted in literature.The present researches approached big data analytics manager in the Pakistani banking industries for validating the proposed model.The data were analyzed using SPSS Andrews approach due to the nature of the research study.The findings revealed that the proposed perspective including perceived benefits,cloud storage,and online behavior monitoring should be tested in the future studies by proposing their indirect affect in the creation of information security issue.The study brings a new aspect in literature of management regarding big data usage practices.展开更多
In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for tim...In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.展开更多
A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (I...A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.展开更多
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE ...The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the cloud.The IoE-based cloud computing services are located at remote locations without the control of the data owner.The data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security capabilities.The lack of knowledge about security capabilities and control over data raises several security issues.Deoxyribonucleic Acid(DNA)computing is a biological concept that can improve the security of IoE big data.The IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher algorithms.This paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access issues.The experimental results illustrated that DNACDS performs better than other DNA-based security schemes.The theoretical security analysis of the DNACDS shows better resistance capabilities.展开更多
The application of big data in the medical device industry mainly refers to the analysis and processing of various medical devices,so as to provide patients with better treatment and rehabilitation services.At present...The application of big data in the medical device industry mainly refers to the analysis and processing of various medical devices,so as to provide patients with better treatment and rehabilitation services.At present,our country already has a relatively mature and reliable large database system.This article studies the application of medical equipment in the big data information platform.The main methods used in this article are survey method,case analysis method,and interview method.The big data information platform and medical devices are studied from different aspects.The survey results show that 41%of people completely agree with the role of big data information platforms in medical devices.展开更多
Big Data applications in the health service field have gradually been paid more close attention. Based on big data technology, more and more health information platforms are beginning to take effects, such as disease ...Big Data applications in the health service field have gradually been paid more close attention. Based on big data technology, more and more health information platforms are beginning to take effects, such as disease prevention, precision medicine, reducing expenditures for medical care and public health, improving medicine research and development. Meanwhile, the platforms have to face a lot of risks, such as health data disclosure, dispute of health data ownership, implicit contradiction explicit, unsustainable platform operation and so on. With the solutions of these risks, the construction of the public platform can provide better service for the citizens, hospital, pharmaceutical company, R&D institutions or and other parties.展开更多
The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in...The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.展开更多
Cloud computing offers internet location-based affordable,scalable,and independent services.Cloud computing is a promising and a cost-effective approach that supports big data analytics and advanced applications in th...Cloud computing offers internet location-based affordable,scalable,and independent services.Cloud computing is a promising and a cost-effective approach that supports big data analytics and advanced applications in the event of forced business continuity events,for instance,pandemic situations.To handle massive information,clusters of servers are required to assist the equipment which enables streamlining the widespread quantity of data,with elevated velocity and modified configurations.Data deduplication model enables cloud users to efficiently manage their cloud storage space by getting rid of redundant data stored in the server.Data deduplication also saves network bandwidth.In this paper,a new cloud-based big data security technique utilizing dual encryption is proposed.The clustering model is utilized to analyze the Deduplication process hash function.Multi kernel Fuzzy C means(MKFCM)was used which helps cluster the data stored in cloud,on the basis of confidence data encryption procedure.The confidence finest data is implemented in homomorphic encryption data wherein the Optimal SIMON Cipher(OSC)technique is used.This security process involving dual encryption with the optimization model develops the productivity mechanism.In this paper,the excellence of the technique was confirmed by comparing the proposed technique with other encryption and clustering techniques.The results proved that the proposed technique achieved maximum accuracy and minimum encryption time.展开更多
The increasing quantity of sensitive and personal data being gathered by data controllers has raised the security needs in the cloud environment.Cloud computing(CC)is used for storing as well as processing data.Theref...The increasing quantity of sensitive and personal data being gathered by data controllers has raised the security needs in the cloud environment.Cloud computing(CC)is used for storing as well as processing data.Therefore,security becomes important as the CC handles massive quantity of outsourced,and unprotected sensitive data for public access.This study introduces a novel chaotic chimp optimization with machine learning enabled information security(CCOML-IS)technique on cloud environment.The proposed CCOML-IS technique aims to accomplish maximum security in the CC environment by the identification of intrusions or anomalies in the network.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Followed by,the CCOML-IS technique derives a feature selection technique using chaotic chimp optimization algorithm(CCOA).In addition,kernel ridge regression(KRR)classifier is used for the detection of security issues in the network.The design of CCOA technique assists in choosing optimal features and thereby boost the classification performance.A wide set of experimentations were carried out on benchmark datasets and the results are assessed under several measures.The comparison study reported the enhanced outcomes of the CCOML-IS technique over the recent approaches interms of several measures.展开更多
Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logi...Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.展开更多
This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering...This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.展开更多
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac...This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.展开更多
As an open-source cloud computing platform,Hadoop is extensively employed in a variety of sectors because of its high dependability,high scalability,and considerable benefits in processing and analyzing massive amount...As an open-source cloud computing platform,Hadoop is extensively employed in a variety of sectors because of its high dependability,high scalability,and considerable benefits in processing and analyzing massive amounts of data.Consequently,to derive valuable insights from transportation big data,it is essential to leverage the Hadoop big data platform for analysis and mining.To summarize the latest research progress on the application of Hadoop to transportation big data,we conducted a comprehensive review of 98 relevant articles published from 2012 to the present.Firstly,a bibliometric analysis was performed using VOSviewer software to identify the evolution trend of keywords.Secondly,we introduced the core components of Hadoop.Subsequently,we systematically reviewed the98 articles,identified the latest research progress,and classified the main application scenarios of Hadoop and its optimization framework.Based on our analysis,we identified the research gaps and future work in this area.Our review of the available research highlights that Hadoop has played a significant role in transportation big data research over the past decade.Specifically,the focus has been on transportation infrastructure monitoring,taxi operation management,travel feature analysis,traffic flow prediction,transportation big data analysis platform,traffic event monitoring and status discrimination,license plate recognition,and the shortest path.Additionally,the optimization framework of Hadoop has been studied in two main areas:the optimization of the computational model of Hadoop and the optimization of Hadoop combined with Spark.Several research results have been achieved in the field of transportation big data.However,there is less systematic research on the core technology of Hadoop,and the breadth and depth of the integration development of Hadoop and transportation big data are not sufficient.In the future,it is suggested that Hadoop may be combined with other big data frameworks such as Storm and Flink that process real-time data sources to improve the real-time processing and analysis of transportation big data.Simultaneously,the research on multi-source heterogeneous transportation big data is still a key focus.Improving existing big data technology to enable the analysis and even data compression of transportation big data can lead to new breakthroughs for intelligent transportation.展开更多
At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorith...At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.展开更多
In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-dr...In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.展开更多
In recent years,with the progress of computer technology,some traditional industries such as geology are facing changes in industrial structure and application mode.So we try to apply big data and virtualization techn...In recent years,with the progress of computer technology,some traditional industries such as geology are facing changes in industrial structure and application mode.So we try to apply big data and virtualization technology in the field of geoscience.This study aims at addressing the existing problems in geological applications,such as data sharing,data processing and computing performance.A Geological Cloud Platform has been designed and realized preliminarily with big data and virtualization technology.The application of the Geological Cloud Platform can be divided into two parts:1)to nest the geological computing model in cloud platform and visualize the results and 2)to use relevant software to conduct data analysis and processing in virtual machines of Windows or Linux system.Finally,we prospect Carlin-type deposits in Nevada by using the spatial data model ArcSDM in the virtual machine.展开更多
The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,acc...The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,accessing the data,and Data Sharing(DS).Big data frame a constant way of uploading and sharing the cloud data in a hierarchical architecture with different kinds of separate privileges to access the data.With the requirement of vast volumes of storage area in the CCEs,capturing a secured data access framework is an important issue.This paper proposes an Improved Secure Identification-based Multilevel Structure of Data Sharing(ISIMSDS)to hold the DS of big data in CCEs.The complex file partitioning technique is proposed to verify the access privilege context for sharing data in complex CCEs.An access control Encryption Method(EM)is used to improve the encryption.The Complexity is measured to increase the authentication standard.The active attack is protected using this ISIMSDS methodology.Our proposed ISIMSDS method assists in diminishing the Complexity whenever the user’s population is increasing rapidly.The security analysis proves that the proposed ISIMSDS methodology is more secure against the chosen-PlainText(PT)attack and provides more efficient computation and storage space than the related methods.The performance of the proposed ISIMSDS methodology provides more efficiency in communication costs such as encryption,decryption,and retrieval of the data.展开更多
Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provi...Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provides services over the internet: Utilizing the online services of different software. Many works have been carried out and various security frameworks relating to the security issues of cloud computing have been proposed in numerous ways. But they do not propose a quantitative approach to analyze and evaluate privacy and security in cloud computing systems. In this research, we try to introduce top security concerns of cloud computing systems, analyze the threats and propose some countermeasures for them. We use a quantitative security risk assessment model to present a multilayer security framework for the solution of the security threats of cloud computing systems. For evaluating the performance of the proposed security framework we have utilized an Own-Cloud platform using a 64-bit quad-core processor based embedded system. Own-Cloud platform is quite literally as any analytics, machine learning algorithms or signal processing techniques can be implemented using the vast variety of Python libraries built for those purposes. In addition, we have proposed two algorithms, which have been deployed in the Own-Cloud for mitigating the attacks and threats to cloud-like reply attacks, DoS/DDoS, back door attacks, Zombie, etc. Moreover, unbalanced RSA based encryption is used to reduce the risk of authentication and authorization. This framework is able to mitigate the targeted attacks satisfactorily.展开更多
基金supported by the Hainan Provincial Key Laboratory of Philosophy and Social Sciences for Hainan Free Trade Port International Shipping Development and Property Rights Digitization,Hainan Vocational University of Science and Technology(Qiong Social Science[2022]No.26).
文摘In recent years,China has witnessed continuous development and progress in its scientific and technological landscape,with widespread utilization of computer networks.Concurrently,issues related to computer network information security,such as information leakage and virus invasions,have become increasingly prominent.Consequently,there is a pressing need for the implementation of effective network security measures.This paper aims to provide a comprehensive summary and analysis of the challenges associated with computer network information security processing.It delves into the core concepts and characteristics of big data technology,exploring its potential as a solution.The study further scrutinizes the application strategy of big data technology in addressing the aforementioned security issues within computer networks.The insights presented in this paper are intended to serve as a valuable reference for individuals involved in the relevant fields,offering guidance on effective approaches to enhance computer network information security through the application of big data technology.
基金supported by National Key Technology Support Program(No.2013BAD17B06)Major Program of National Social Science Fund(No.15ZDB154)
文摘Big data has been taken as a Chinese national strategy in order to satisfy the developments of the social and economic requirements and the development of new information technology. The prosperity of big data brings not only convenience to people's daily life and more opportunities to enterprises, but more challenges with information security as well. This paper has a research on new types and features of information security issues in the age of big data, and puts forward the solutions for the above issues: build up the big data security management platform, set up the establishment of information security system and implement relevant laws and regulations.
文摘The present research study proposed some of the big data usage perspectives for testing either they have a role in creating information security concern or not.The researchers first dig out some of the theoretical support for filling the gap regarding big data and information security bridge that was previously noted in literature.The present researches approached big data analytics manager in the Pakistani banking industries for validating the proposed model.The data were analyzed using SPSS Andrews approach due to the nature of the research study.The findings revealed that the proposed perspective including perceived benefits,cloud storage,and online behavior monitoring should be tested in the future studies by proposing their indirect affect in the creation of information security issue.The study brings a new aspect in literature of management regarding big data usage practices.
基金Funding for this study was received from the Taif University,Taif,Saudi Arabia under the Grant No.TURSP-2020/150.
文摘In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.
文摘A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.
文摘The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the cloud.The IoE-based cloud computing services are located at remote locations without the control of the data owner.The data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security capabilities.The lack of knowledge about security capabilities and control over data raises several security issues.Deoxyribonucleic Acid(DNA)computing is a biological concept that can improve the security of IoE big data.The IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher algorithms.This paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access issues.The experimental results illustrated that DNACDS performs better than other DNA-based security schemes.The theoretical security analysis of the DNACDS shows better resistance capabilities.
基金This work was supported by the Horizontal Research Project of China(No.20WURD043).
文摘The application of big data in the medical device industry mainly refers to the analysis and processing of various medical devices,so as to provide patients with better treatment and rehabilitation services.At present,our country already has a relatively mature and reliable large database system.This article studies the application of medical equipment in the big data information platform.The main methods used in this article are survey method,case analysis method,and interview method.The big data information platform and medical devices are studied from different aspects.The survey results show that 41%of people completely agree with the role of big data information platforms in medical devices.
文摘Big Data applications in the health service field have gradually been paid more close attention. Based on big data technology, more and more health information platforms are beginning to take effects, such as disease prevention, precision medicine, reducing expenditures for medical care and public health, improving medicine research and development. Meanwhile, the platforms have to face a lot of risks, such as health data disclosure, dispute of health data ownership, implicit contradiction explicit, unsustainable platform operation and so on. With the solutions of these risks, the construction of the public platform can provide better service for the citizens, hospital, pharmaceutical company, R&D institutions or and other parties.
基金supported in part by the National Nature Science Foundation of China under Grant No.61402413 and 61340058 the "Six Kinds Peak Talents Plan" project of Jiangsu Province under Grant No.ll-JY-009+2 种基金the Nature Science Foundation of Zhejiang Province under Grant No.LY14F020019, Z14F020006 and Y1101183the China Postdoctoral Science Foundation funded project under Grant No.2012M511732Jiangsu Province Postdoctoral Science Foundation funded project Grant No.1102014C
文摘The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.
文摘Cloud computing offers internet location-based affordable,scalable,and independent services.Cloud computing is a promising and a cost-effective approach that supports big data analytics and advanced applications in the event of forced business continuity events,for instance,pandemic situations.To handle massive information,clusters of servers are required to assist the equipment which enables streamlining the widespread quantity of data,with elevated velocity and modified configurations.Data deduplication model enables cloud users to efficiently manage their cloud storage space by getting rid of redundant data stored in the server.Data deduplication also saves network bandwidth.In this paper,a new cloud-based big data security technique utilizing dual encryption is proposed.The clustering model is utilized to analyze the Deduplication process hash function.Multi kernel Fuzzy C means(MKFCM)was used which helps cluster the data stored in cloud,on the basis of confidence data encryption procedure.The confidence finest data is implemented in homomorphic encryption data wherein the Optimal SIMON Cipher(OSC)technique is used.This security process involving dual encryption with the optimization model develops the productivity mechanism.In this paper,the excellence of the technique was confirmed by comparing the proposed technique with other encryption and clustering techniques.The results proved that the proposed technique achieved maximum accuracy and minimum encryption time.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/49/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The increasing quantity of sensitive and personal data being gathered by data controllers has raised the security needs in the cloud environment.Cloud computing(CC)is used for storing as well as processing data.Therefore,security becomes important as the CC handles massive quantity of outsourced,and unprotected sensitive data for public access.This study introduces a novel chaotic chimp optimization with machine learning enabled information security(CCOML-IS)technique on cloud environment.The proposed CCOML-IS technique aims to accomplish maximum security in the CC environment by the identification of intrusions or anomalies in the network.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Followed by,the CCOML-IS technique derives a feature selection technique using chaotic chimp optimization algorithm(CCOA).In addition,kernel ridge regression(KRR)classifier is used for the detection of security issues in the network.The design of CCOA technique assists in choosing optimal features and thereby boost the classification performance.A wide set of experimentations were carried out on benchmark datasets and the results are assessed under several measures.The comparison study reported the enhanced outcomes of the CCOML-IS technique over the recent approaches interms of several measures.
基金supported in part by National Key Research and Development Program under Grant No. 2016YFC0803206China Postdoctoral Science Foundation under Grant No.2016M600972
文摘Intellectualization has become a new trend for telecom industry, driven by intelligent technology including cloud computing, big data, and Internet of things. In order to satisfy the service demand of intelligent logistics, this paper designed an intelligent logistics platform containing the main applications such as e-commerce, self-service transceiver, big data analysis, path location and distribution optimization. The intelligent logistics service platform has been built based on cloud computing to collect, store and handling multi-source heterogeneous mass data from sensors, RFID electronic tag, vehicle terminals and APP, so that the open-access cloud services including distribution, positioning, navigation, scheduling and other data services can be provided for the logistics distribution applications. And then the architecture of intelligent logistics cloud platform containing software layer(SaaS), platform layer(PaaS) and infrastructure(IaaS) has been constructed accordance with the core technology relative high concurrent processing technique, heterogeneous terminal data access, encapsulation and data mining. Therefore, intelligent logistics cloud platform can be carried out by the service mode for implementation to accelerate the construction of the symbiotic win-winlogistics ecological system and the benign development of the ICT industry in the trend of intellectualization in China.
文摘This article explores the evolution of cloud computing, its advantages over traditional on-premises infrastructure, and its impact on information security. The study presents a comprehensive literature review covering various cloud infrastructure offerings and security models. Additionally, it deeply analyzes real-life case studies illustrating successful cloud migrations and highlights common information security threats in current cloud computing. The article concludes by offering recommendations to businesses to protect themselves from cloud data breaches and providing insights into selecting a suitable cloud services provider from an information security perspective.
文摘This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.
基金supported by the Natural Science Foundation of China(No.52062027)the Key Research and Development Project of Gansu Province(No.22YF7GA142)+2 种基金Soft Science Special Project of Gansu Basic Research PIan(No.22JR4ZA035)Gansu Provincial Science and Technology Major Special Project-Enterprise Innovation Consortium Project(No.22ZD6GA010 and No.21ZD3GA002)Lanzhou Jiaotong University Basic Research Top Talents Training Program(No.2022JC02)。
文摘As an open-source cloud computing platform,Hadoop is extensively employed in a variety of sectors because of its high dependability,high scalability,and considerable benefits in processing and analyzing massive amounts of data.Consequently,to derive valuable insights from transportation big data,it is essential to leverage the Hadoop big data platform for analysis and mining.To summarize the latest research progress on the application of Hadoop to transportation big data,we conducted a comprehensive review of 98 relevant articles published from 2012 to the present.Firstly,a bibliometric analysis was performed using VOSviewer software to identify the evolution trend of keywords.Secondly,we introduced the core components of Hadoop.Subsequently,we systematically reviewed the98 articles,identified the latest research progress,and classified the main application scenarios of Hadoop and its optimization framework.Based on our analysis,we identified the research gaps and future work in this area.Our review of the available research highlights that Hadoop has played a significant role in transportation big data research over the past decade.Specifically,the focus has been on transportation infrastructure monitoring,taxi operation management,travel feature analysis,traffic flow prediction,transportation big data analysis platform,traffic event monitoring and status discrimination,license plate recognition,and the shortest path.Additionally,the optimization framework of Hadoop has been studied in two main areas:the optimization of the computational model of Hadoop and the optimization of Hadoop combined with Spark.Several research results have been achieved in the field of transportation big data.However,there is less systematic research on the core technology of Hadoop,and the breadth and depth of the integration development of Hadoop and transportation big data are not sufficient.In the future,it is suggested that Hadoop may be combined with other big data frameworks such as Storm and Flink that process real-time data sources to improve the real-time processing and analysis of transportation big data.Simultaneously,the research on multi-source heterogeneous transportation big data is still a key focus.Improving existing big data technology to enable the analysis and even data compression of transportation big data can lead to new breakthroughs for intelligent transportation.
文摘At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.
文摘In order to improve efficiency of the integrated test of a launch vehicle electrical system while meeting the requirement of high-density,a cloud test platform for the electrical system was designed based on a data-driven approach,using secure private cloud technology and virtualization technology.The platform has a general hardware and software architecture,which integrates the functions of graphical editing,automated testing,data processing,fault diagnosis and so on.It can realize multi-task parallel testing.Compared with the traditional test mode,the platform has obvious advantages on testing eficiency and effectiveness.
文摘In recent years,with the progress of computer technology,some traditional industries such as geology are facing changes in industrial structure and application mode.So we try to apply big data and virtualization technology in the field of geoscience.This study aims at addressing the existing problems in geological applications,such as data sharing,data processing and computing performance.A Geological Cloud Platform has been designed and realized preliminarily with big data and virtualization technology.The application of the Geological Cloud Platform can be divided into two parts:1)to nest the geological computing model in cloud platform and visualize the results and 2)to use relevant software to conduct data analysis and processing in virtual machines of Windows or Linux system.Finally,we prospect Carlin-type deposits in Nevada by using the spatial data model ArcSDM in the virtual machine.
文摘The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,accessing the data,and Data Sharing(DS).Big data frame a constant way of uploading and sharing the cloud data in a hierarchical architecture with different kinds of separate privileges to access the data.With the requirement of vast volumes of storage area in the CCEs,capturing a secured data access framework is an important issue.This paper proposes an Improved Secure Identification-based Multilevel Structure of Data Sharing(ISIMSDS)to hold the DS of big data in CCEs.The complex file partitioning technique is proposed to verify the access privilege context for sharing data in complex CCEs.An access control Encryption Method(EM)is used to improve the encryption.The Complexity is measured to increase the authentication standard.The active attack is protected using this ISIMSDS methodology.Our proposed ISIMSDS method assists in diminishing the Complexity whenever the user’s population is increasing rapidly.The security analysis proves that the proposed ISIMSDS methodology is more secure against the chosen-PlainText(PT)attack and provides more efficient computation and storage space than the related methods.The performance of the proposed ISIMSDS methodology provides more efficiency in communication costs such as encryption,decryption,and retrieval of the data.
文摘Cloud computing is a type of emerging computing technology that relies on shared computing resources rather than having local servers or personal devices to handle applications. It is an emerging technology that provides services over the internet: Utilizing the online services of different software. Many works have been carried out and various security frameworks relating to the security issues of cloud computing have been proposed in numerous ways. But they do not propose a quantitative approach to analyze and evaluate privacy and security in cloud computing systems. In this research, we try to introduce top security concerns of cloud computing systems, analyze the threats and propose some countermeasures for them. We use a quantitative security risk assessment model to present a multilayer security framework for the solution of the security threats of cloud computing systems. For evaluating the performance of the proposed security framework we have utilized an Own-Cloud platform using a 64-bit quad-core processor based embedded system. Own-Cloud platform is quite literally as any analytics, machine learning algorithms or signal processing techniques can be implemented using the vast variety of Python libraries built for those purposes. In addition, we have proposed two algorithms, which have been deployed in the Own-Cloud for mitigating the attacks and threats to cloud-like reply attacks, DoS/DDoS, back door attacks, Zombie, etc. Moreover, unbalanced RSA based encryption is used to reduce the risk of authentication and authorization. This framework is able to mitigate the targeted attacks satisfactorily.