A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyr...A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.展开更多
Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithio...Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithiocarbamate (APDC) was adopted as the chelating agent prior to CPE and then was detected by atomic absorption spectrometry (AAS). Different parameters such as the concentration of surfactants, chelating agent and salt, sample pH, equilibration temperature and time, centrifugation time and rates, and the effect of foreign ions were studied. Under optimum conditions, the low limits of detections are 1.4, 2.8 and 1.2 ng·ml^-1 and the enrichment factors are 21, 12, and 24 for Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ, respectively. The relative standard deviations vary from 0.6% to 1.0% (n=11). All correlation coefficients of the calibration curves are >0.9960. The proposed method was successfully applied for the determination of Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ) in the real soil of industrial sewage samples.展开更多
A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-...A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-hydroxyquinoline and Triton X-100 were used as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hy-drophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction, such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95%―103%.展开更多
Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame ato...Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.展开更多
基金the Analysis and Testing Foundation of Zhejiang Province(No 04045)
文摘A novel approach was developed for the determination of ultratrace amounts of copper in water samples by using electrothermal atomic absorption spectrometry (ETAAS) after cloud point extraction ( CPE ). 1-( 2-Pyridylazo ) -2- naphthol was used as the chelating reagent and Triton X-114 as the mieellar-forming surfactant. CPE was conducted in a pH 8. 0 medium at 40 ℃ for 10 rain. After the separation of the phases by contrifugafion, the surfactant-rieh phase was diluted with 1 mL of a methanol solution of 0. 1 mol/L HNO3. Then 20μL of the diluted surfactant-rieh phase was injected into the graphite furnace for atomization in the absence of any matrix modifier. Various experimental conditions that affect the extraction and atomization processes were optimized. A detection limit of 5 ng/L was obtained after preconeentration. The linear dynamic range of the copper mass concentration was found to be 0-2.0 ng/mL, and the relative standard deviation was found to be less than 3. 1% for a sample containing 1.0 ng/mL Cu ( Ⅱ ). This developed method was successfully applied to the determination of uhratraee amounts of Cu in drinking water, tap water, and seawater samples.
基金supported by the National Natural Science Foundation of China(No.20961012)the Medical Neurobiology Key Laboratory of Kunming University of Science and Technology,Basic and Applied Research Project in Yunnan Province(No.2008ZC082M)+3 种基金the Analysis and Testing Foundation of Kunming University of Science and Technology(No.2010121)Innovation Fund for Smalland Medium Technology Based Firms(No.11C26215305936)Natural and Science Foundation of Yunnan Province(No.2010ZC027)Focus Fund of Department of Education in Yunnan Province(No.2010Z016)
文摘Cloud point extraction (CPE) with Tergitol TMN-6 was applied for the extraction of trace amounts of palladium (Pd(Ⅱ)), platinum (Pt(Ⅳ)), and gold (Au(Ⅲ)) in the soil of industrial sewage. Ammonium pyrolysine dithiocarbamate (APDC) was adopted as the chelating agent prior to CPE and then was detected by atomic absorption spectrometry (AAS). Different parameters such as the concentration of surfactants, chelating agent and salt, sample pH, equilibration temperature and time, centrifugation time and rates, and the effect of foreign ions were studied. Under optimum conditions, the low limits of detections are 1.4, 2.8 and 1.2 ng·ml^-1 and the enrichment factors are 21, 12, and 24 for Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ, respectively. The relative standard deviations vary from 0.6% to 1.0% (n=11). All correlation coefficients of the calibration curves are >0.9960. The proposed method was successfully applied for the determination of Pd(Ⅱ), Pt(Ⅳ), and Au(Ⅲ) in the real soil of industrial sewage samples.
基金Supported by the National Natural Science Foundation of China(No.20075009)
文摘A new method based on the cloud point extraction(CPE) for separation and preconcentration of nickel(Ⅱ) and its subsequent determination by graphite furnace atomic absorption spectrometry(GFAAS) was proposed, 8-hydroxyquinoline and Triton X-100 were used as the ligand and surfactant respectively. Nickel(Ⅱ) can form a hy-drophobic complex with 8-hydroxyquinoline, the complex can be extracted into the small volume surfactant rich phase at the cloud point temperature(CPT) for GFAAS determination. The factors affecting the cloud point extraction, such as pH, ligand concentration, surfactant concentration, and the incubation time were optimized. Under the optimal conditions, a detection limit of 12 ng/L and a relative standard deviation(RSD) of 2.9% were obtained for Ni(Ⅱ) determination. The enrichment factor was found to be 25. The proposed method was successfully applied to the determination of nickel(Ⅱ) in certified reference material and different types of water samples and the recovery was in a range of 95%―103%.
文摘Cloud point extraction (CPE) has been used for the preconcentration of cadmium, after the formation of a complex with 1, 5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH), and further determination by flame atomic absorption spectrometry (FAAS) using Triton X-114 as surfactant. The main factors affecting the CPE, such as concentration of Triton X-114 and DPTH, pH, equilibration temperature and incubation time, were optimized for the best extract efficiency. Under the optimum conditions i.e., pH 5.4, [DPTH] = 6x10-3%, [Triton X-114] = 0.25% (v/v), an enhancement factor of 10.5 fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.95 μg L?1. The precision for 8 replicate deter- minations at 20 and 100 μgL?1 Cd were 2.4 % and 2 % relative standard deviation (R.S.D.). The calibration graph using the preconcentration method was linear with a correlation coefficient of 0,998 at levels close to the detection limit up to at least 200 μgL?1. The method was successfully applied to the determination of cadmium in water, environmental and food samples and in a BCR-176 standard reference material.