Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associ...Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associated cloud simulation on temporal and spatial scales becomes an important issue. We report a cloud- resolving modeling analysis on this issue by comparing the control experiment with experiments perturbed by initial temperature, water vapor, and cloud conditions. The simulation is considered to be accurate only if the root-mean-squared difference between the perturbation experiments and the control experiment is smaller than the standard deviation. The analysis may suggest that accurate precipitation and cloud simulations cannot be obtained on both fine temporal and spatial scales simultaneously, which limits quanti- tative precipitation forecasting. The accurate simulation of water vapor convergence could lead to accurate precipitation and cloud simulations on daily time scales, but it may not be beneficial to precipitation and cloud simulations on hourly time scales due to the dominance of cloud processes.展开更多
The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlo...The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlonless convective cloud transport model. The results show that an isolated, weak storm is able to pump pollutant gas out PBL and transport it to the mid-troposphere, whereas a deep. intense thunderstorm can very efficiently transport air pollutants up to the mid and upper troposphere and laterally spread with anvil, forming an extensive concentration surge layer at aliitnde of ten odd kilometers altitude. Each type of convective transport results in concentration reduction in PHL. In a wind shear environment the transport efficiency of deep thunderstorm significantly increases and the pollutants enter into clouds on the downshear side at low level and spread downwind in anvil layer. On the other hand, for a cumulus cloud with plenty of liquid water. the gas dissolution effect is increased, and the irreversible aqueous reactions, in extreme, may significantly weaken the vertical transports of pollutant gases even with solubility coefficients no more than 103 M atm-1.展开更多
This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMI...This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.展开更多
Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) h...Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.展开更多
A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that ...A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that for gases with not very high solubility, a deep and intense thunderstorm can still rapidly and efficiently transport them from boundary layer(PBL) up to mid and upper troposphere. resulting in a local significant increase of concentration in the upper layer and a reduction in PBL. Dissolution effects decrease both the incloud gas concentration and the upward net fluxes. The higher the solubility is, the more remarkable the decrease is. However, for very low soluble gases (H<102 Matm-1), the influences are very slight. In addition, the effects of irreversible dissolution and aqueous reactions in drops on the vertical transport of gaseous pollutants are estimated in extreme.展开更多
In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the r...In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the redundant, turn on the demanded" strategy here. Firstly, a green cloud computing model is presented, abstracting the task scheduling problem to the virtual machine deployment issue with the virtualization technology. Secondly, the future workloads of system need to be predicted: a cubic exponential smoothing algorithm based on the conservative control(CESCC) strategy is proposed, combining with the current state and resource distribution of system, in order to calculate the demand of resources for the next period of task requests. Then, a multi-objective constrained optimization model of power consumption and a low-energy resource allocation algorithm based on probabilistic matching(RA-PM) are proposed. In order to reduce the power consumption further, the resource allocation algorithm based on the improved simulated annealing(RA-ISA) is designed with the improved simulated annealing algorithm. Experimental results show that the prediction and conservative control strategy make resource pre-allocation catch up with demands, and improve the efficiency of real-time response and the stability of the system. Both RA-PM and RA-ISA can activate fewer hosts, achieve better load balance among the set of high applicable hosts, maximize the utilization of resources, and greatly reduce the power consumption of cloud computing systems.展开更多
The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between obj...The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between objects and clouds.Oriented bounding box(OBB)hierarchical trees of objects are established,and the resolutions of global and local grids can be selected automatically.The motion equations of fluid dynamics are simplified.Upwind difference is applied to ensure the stability of the simulation process during the discrete process of partial differential equations.To solve the speed problem of existed phase functions,the improved phase function is applied to the illumination calculation of clouds.Experimental results show that the proposed methods can promote the simulation efficiency and meet the need for the simulation of large-scale clouds scene.Real-time rendering of clouds and the interaction between clouds and objects have been realized without preprocessing stage.展开更多
Based on the concepts of cloud water resource(CWR)and related variables proposed in the first part of this study,this paper provides details of two methods to quantify the CWR.One is diagnostic quantification(CWR-DQ)b...Based on the concepts of cloud water resource(CWR)and related variables proposed in the first part of this study,this paper provides details of two methods to quantify the CWR.One is diagnostic quantification(CWR-DQ)based on satellite observations,precipitation products,and atmospheric reanalysis data;and the other is numerical quantification(CWR-NQ)based on a cloud resolving model developed at the Chinese Academy of Meteorological Sciences(CAMS).The two methods are applied to quantify the CWR in April and August 2017 over North China,and the results are evaluated against all available observations.Main results are as follows.(1)For the CWR-DQ approach,reference cloud profiles are firstly derived based on the Cloud Sat/CALIPSO joint satellite observations for 2007–2010.The NCEP/NCAR reanalysis data in 2000–2017 are then employed to produce three-dimensional cloud fields.The budget/balance equations of atmospheric water substance are lastly used,together with precipitation observations,to retrieve CWR and related variables.It is found that the distribution and vertical structure of clouds obtained by the diagnostic method are consistent with observations.(2)For the CWR-NQ approach,it assumes that the cloud resolving model is able to describe the cloud microphysical processes completely and precisely,from which four-dimensional distributions of atmospheric water vapor,hydrometeors,and wind fields can be obtained.The data are then employed to quantify the CWR and related terms/quantities.After one-month continuous integration,the mass of atmospheric water substance becomes conserved,and the tempospatial distributions of water vapor,hydrometeors/cloud water,and precipitation are consistent with observations.(3)Diagnostic values of the difference in the transition between hydrometeors and water vapor(Cvh-Chv)and the surface evaporation(Es)are well consistent with their numerical values.(4)Correlation and bias analyses show that the diagnostic CWR contributors are well correlated with observations,and match their numerical counterparts as well,indicating that the CWR-NQ and CWR-DQ methods are reasonable.(5)Underestimation of water vapor converted from hydrometeors(Chv)is a shortcoming of the CWR-DQ method,which may be rectified by numerical quantification results or by use of advanced observations on higher spatiotemporal resolutions.展开更多
At present,parameterization methods to describe cloud and precipitation processes are widely used in cloud and mesoscale models,but with different drop size distributions.When precipitation formation mechanism,weather...At present,parameterization methods to describe cloud and precipitation processes are widely used in cloud and mesoscale models,but with different drop size distributions.When precipitation formation mechanism,weather modification technique,and mechanism of hail suppression with seeding are studied by using these models,a question that needs to be addressed is:what is the influence of different drop size distributions and related parameters on cloud and precipitation?In this paper,by using a three-dimensional hail cloud numerical model developed by the Institutes of Atmospheric Physics,Chinese Academy of Sciences, we performed numerical experiments with varied drop size distribution parameters for two hail storms,and analyzed the influence of shape parameters(ar,ai,and ag)of raindrops,ice crystal,and graupel size distributions on rainfall,hail amount,and microphysical processes in clouds.The results show that the variation of ar has no effect on precipitation formation on the whole,but affects directly the production rates for the physical processes related to raindrop.The ag variation has a less obvious effect on rainfall amount,but has a significant effect on hail amount,hailfall rate,and rainfall intensity.It impacts noticeably on the generation rate of the number and mass of ice crystal,graupel,and hail,and also to various degrees on all the microphysical processes in clouds.The ag variation also influences the growing process of the hydrometeors.The effects of the ai variation on part of the generation and growing processes of all the hydrometeors are significant,and even dramatic,such as the collection process of cloud water to rain through melting ice crystal(T CLcir).However,for clouds located in different geographic regions,the variation of ai has different effects on precipitation,which reflects the complexity of the impact of drop size distribution on cloud and precipitation.At last,some issues about the application of cloud models are also discussed.展开更多
Cloud simulation derived data is defined as the data related to service version,characteristics,relationships,runtime environments and cross-domain communication during service execution in cloud simulation environmen...Cloud simulation derived data is defined as the data related to service version,characteristics,relationships,runtime environments and cross-domain communication during service execution in cloud simulation environment,collectively.It is of great value and significance in cloud simulation for service description,service composition and resource management.The types of derived data are abundant and the amount of it is huge.Existing studies on cloud simulation usually assume all of the derived data required for a specific task is well organized and available anytime,which is of course impossible.Derived data needs to be expressed and managed in terms of knowledge to make sure the smooth execution of cloud simulation platform.Therefore,this paper presents a derived data management method in cloud simulation platform to enable derived data collection and dynamic knowledge storage.The prototype system of the proposed method are established and a virtual prototype of double girder crane is taken as an example to verify the effectiveness of the method.展开更多
A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,...A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,1997 is simulated by the model to analyze mechanisms of hail formation and hail suppression with seeding.The results show that 97% of hail embryos are frozen drops.The seeding experiments with AgI in terms of heights show that if the seeding is made before hail formation,the optimum seeding position is located in the maximum updraft area and its center,i.e.,AgI is seeded in the zone with high water content to be coordinated with maximum zone of the updraft.The seeding makes concentrations of graupel and frozen drop increase and their average mass or size decrease,so that the proportion of conversion from graupel and frozen drop into hail descends greatly,and the mass and concentration of hailstone are decreased to achieve our purpose for hail suppression.展开更多
The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard...The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed.In the presence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds.Doubled carbon dioxide leads to the reduction in tropical rainfall,caused by the removal of radiative effects of water clouds through the suppressed infrared cooling.In the absence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds.The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling,which is insensitive to the change in carbon dioxide.展开更多
The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding...The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground(CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs(OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning(IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL(STUL) is initiated mainly during the dissipation stage of a thunderstorm.展开更多
基金supported from the National Key Basic Research and Development Projectof China(2009CB421505)the National Natural Sciences Foundation of China(40775031)the Project(No.2008LASW-A01)
文摘Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associated cloud simulation on temporal and spatial scales becomes an important issue. We report a cloud- resolving modeling analysis on this issue by comparing the control experiment with experiments perturbed by initial temperature, water vapor, and cloud conditions. The simulation is considered to be accurate only if the root-mean-squared difference between the perturbation experiments and the control experiment is smaller than the standard deviation. The analysis may suggest that accurate precipitation and cloud simulations cannot be obtained on both fine temporal and spatial scales simultaneously, which limits quanti- tative precipitation forecasting. The accurate simulation of water vapor convergence could lead to accurate precipitation and cloud simulations on daily time scales, but it may not be beneficial to precipitation and cloud simulations on hourly time scales due to the dominance of cloud processes.
文摘The vertical transport features of gaseous pollutants, with a negative exponent profile of concentration, by different types of convective cloud systems are numerically investigated by using a two-dimensional, reactlonless convective cloud transport model. The results show that an isolated, weak storm is able to pump pollutant gas out PBL and transport it to the mid-troposphere, whereas a deep. intense thunderstorm can very efficiently transport air pollutants up to the mid and upper troposphere and laterally spread with anvil, forming an extensive concentration surge layer at aliitnde of ten odd kilometers altitude. Each type of convective transport results in concentration reduction in PHL. In a wind shear environment the transport efficiency of deep thunderstorm significantly increases and the pollutants enter into clouds on the downshear side at low level and spread downwind in anvil layer. On the other hand, for a cumulus cloud with plenty of liquid water. the gas dissolution effect is increased, and the irreversible aqueous reactions, in extreme, may significantly weaken the vertical transports of pollutant gases even with solubility coefficients no more than 103 M atm-1.
基金supported by the National Natural Science Foundation of China(Nos.42076208,42141019,41831175 and 41706026)the National Key Research and Development Program of China(No.2017YFA0604600)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211209)the Fundamental Research Funds for the Central Universities(Nos.B210202135 and B210201015).
文摘This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.
文摘Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.
文摘A two-dimensional, non-reactive convective cloud transport model is used to simulate in detail the vertical transport and wet scavenging of soluble pollutant gases by a deep thunderstorm systems Simulations show that for gases with not very high solubility, a deep and intense thunderstorm can still rapidly and efficiently transport them from boundary layer(PBL) up to mid and upper troposphere. resulting in a local significant increase of concentration in the upper layer and a reduction in PBL. Dissolution effects decrease both the incloud gas concentration and the upward net fluxes. The higher the solubility is, the more remarkable the decrease is. However, for very low soluble gases (H<102 Matm-1), the influences are very slight. In addition, the effects of irreversible dissolution and aqueous reactions in drops on the vertical transport of gaseous pollutants are estimated in extreme.
基金supported by the National Natural Science Foundation of China(6147219261202004)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘In order to lower the power consumption and improve the coefficient of resource utilization of current cloud computing systems, this paper proposes two resource pre-allocation algorithms based on the "shut down the redundant, turn on the demanded" strategy here. Firstly, a green cloud computing model is presented, abstracting the task scheduling problem to the virtual machine deployment issue with the virtualization technology. Secondly, the future workloads of system need to be predicted: a cubic exponential smoothing algorithm based on the conservative control(CESCC) strategy is proposed, combining with the current state and resource distribution of system, in order to calculate the demand of resources for the next period of task requests. Then, a multi-objective constrained optimization model of power consumption and a low-energy resource allocation algorithm based on probabilistic matching(RA-PM) are proposed. In order to reduce the power consumption further, the resource allocation algorithm based on the improved simulated annealing(RA-ISA) is designed with the improved simulated annealing algorithm. Experimental results show that the prediction and conservative control strategy make resource pre-allocation catch up with demands, and improve the efficiency of real-time response and the stability of the system. Both RA-PM and RA-ISA can activate fewer hosts, achieve better load balance among the set of high applicable hosts, maximize the utilization of resources, and greatly reduce the power consumption of cloud computing systems.
基金supported by the National Natural Science Foundation of China(No.61102167)
文摘The multi-resolution adaptive grids method is proposed to solve the problems of inefficiency in the previous grid-based methods,and it can be used in clouds simulation as well as the interactive simulation between objects and clouds.Oriented bounding box(OBB)hierarchical trees of objects are established,and the resolutions of global and local grids can be selected automatically.The motion equations of fluid dynamics are simplified.Upwind difference is applied to ensure the stability of the simulation process during the discrete process of partial differential equations.To solve the speed problem of existed phase functions,the improved phase function is applied to the illumination calculation of clouds.Experimental results show that the proposed methods can promote the simulation efficiency and meet the need for the simulation of large-scale clouds scene.Real-time rendering of clouds and the interaction between clouds and objects have been realized without preprocessing stage.
基金Supported by the National Key Research and Development Program of China(2016YFA0601701)National High Technology Research and Development Program of China(2012AA120902)。
文摘Based on the concepts of cloud water resource(CWR)and related variables proposed in the first part of this study,this paper provides details of two methods to quantify the CWR.One is diagnostic quantification(CWR-DQ)based on satellite observations,precipitation products,and atmospheric reanalysis data;and the other is numerical quantification(CWR-NQ)based on a cloud resolving model developed at the Chinese Academy of Meteorological Sciences(CAMS).The two methods are applied to quantify the CWR in April and August 2017 over North China,and the results are evaluated against all available observations.Main results are as follows.(1)For the CWR-DQ approach,reference cloud profiles are firstly derived based on the Cloud Sat/CALIPSO joint satellite observations for 2007–2010.The NCEP/NCAR reanalysis data in 2000–2017 are then employed to produce three-dimensional cloud fields.The budget/balance equations of atmospheric water substance are lastly used,together with precipitation observations,to retrieve CWR and related variables.It is found that the distribution and vertical structure of clouds obtained by the diagnostic method are consistent with observations.(2)For the CWR-NQ approach,it assumes that the cloud resolving model is able to describe the cloud microphysical processes completely and precisely,from which four-dimensional distributions of atmospheric water vapor,hydrometeors,and wind fields can be obtained.The data are then employed to quantify the CWR and related terms/quantities.After one-month continuous integration,the mass of atmospheric water substance becomes conserved,and the tempospatial distributions of water vapor,hydrometeors/cloud water,and precipitation are consistent with observations.(3)Diagnostic values of the difference in the transition between hydrometeors and water vapor(Cvh-Chv)and the surface evaporation(Es)are well consistent with their numerical values.(4)Correlation and bias analyses show that the diagnostic CWR contributors are well correlated with observations,and match their numerical counterparts as well,indicating that the CWR-NQ and CWR-DQ methods are reasonable.(5)Underestimation of water vapor converted from hydrometeors(Chv)is a shortcoming of the CWR-DQ method,which may be rectified by numerical quantification results or by use of advanced observations on higher spatiotemporal resolutions.
基金the General Program of the Basic Scientific Research Funds of Chinese Academy of Meteorological Sciences underGrant No.2008Y001the National Natural Science Foundation of China under Grant No.40475006
文摘At present,parameterization methods to describe cloud and precipitation processes are widely used in cloud and mesoscale models,but with different drop size distributions.When precipitation formation mechanism,weather modification technique,and mechanism of hail suppression with seeding are studied by using these models,a question that needs to be addressed is:what is the influence of different drop size distributions and related parameters on cloud and precipitation?In this paper,by using a three-dimensional hail cloud numerical model developed by the Institutes of Atmospheric Physics,Chinese Academy of Sciences, we performed numerical experiments with varied drop size distribution parameters for two hail storms,and analyzed the influence of shape parameters(ar,ai,and ag)of raindrops,ice crystal,and graupel size distributions on rainfall,hail amount,and microphysical processes in clouds.The results show that the variation of ar has no effect on precipitation formation on the whole,but affects directly the production rates for the physical processes related to raindrop.The ag variation has a less obvious effect on rainfall amount,but has a significant effect on hail amount,hailfall rate,and rainfall intensity.It impacts noticeably on the generation rate of the number and mass of ice crystal,graupel,and hail,and also to various degrees on all the microphysical processes in clouds.The ag variation also influences the growing process of the hydrometeors.The effects of the ai variation on part of the generation and growing processes of all the hydrometeors are significant,and even dramatic,such as the collection process of cloud water to rain through melting ice crystal(T CLcir).However,for clouds located in different geographic regions,the variation of ai has different effects on precipitation,which reflects the complexity of the impact of drop size distribution on cloud and precipitation.At last,some issues about the application of cloud models are also discussed.
基金the National High-Tech Research and Development Plan of China under Grant No.2015AA042101National Natural Science Foundation of China under Grant No.61374199State Key Laboratory of Intelligent Manufacturing System Technology.
文摘Cloud simulation derived data is defined as the data related to service version,characteristics,relationships,runtime environments and cross-domain communication during service execution in cloud simulation environment,collectively.It is of great value and significance in cloud simulation for service description,service composition and resource management.The types of derived data are abundant and the amount of it is huge.Existing studies on cloud simulation usually assume all of the derived data required for a specific task is well organized and available anytime,which is of course impossible.Derived data needs to be expressed and managed in terms of knowledge to make sure the smooth execution of cloud simulation platform.Therefore,this paper presents a derived data management method in cloud simulation platform to enable derived data collection and dynamic knowledge storage.The prototype system of the proposed method are established and a virtual prototype of double girder crane is taken as an example to verify the effectiveness of the method.
文摘A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,1997 is simulated by the model to analyze mechanisms of hail formation and hail suppression with seeding.The results show that 97% of hail embryos are frozen drops.The seeding experiments with AgI in terms of heights show that if the seeding is made before hail formation,the optimum seeding position is located in the maximum updraft area and its center,i.e.,AgI is seeded in the zone with high water content to be coordinated with maximum zone of the updraft.The seeding makes concentrations of graupel and frozen drop increase and their average mass or size decrease,so that the proportion of conversion from graupel and frozen drop into hail descends greatly,and the mass and concentration of hailstone are decreased to achieve our purpose for hail suppression.
基金Supported by the National Natural Science Foundation of China(41475039)National Key Basic Research and Development (973) Program of China(2015CB953601)
文摘The effects of doubled carbon dioxide on rainfall responses to radiative processes of water clouds are investigated in this study.Two groups of two-dimensional cloud-resolving model sensitivity experiments with regard to pre-summer heavy rainfall around the summer solstice and tropical rainfall around the winter solstice are conducted and their five-day averages over the model domain are analyzed.In the presence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the decrease associated with the enhanced atmospheric cooling to the increase associated with the enhanced infrared cooling as a result of the exclusion of radiative effects of water clouds.Doubled carbon dioxide leads to the reduction in tropical rainfall,caused by the removal of radiative effects of water clouds through the suppressed infrared cooling.In the absence of radiative effects of ice clouds,doubled carbon dioxide changes pre-summer rainfall from the increase associated with the strengthened atmospheric warming to the decrease associated with the weakened release of latent heat caused by the elimination of radiative effects of water clouds.The exclusion of radiative effects of water clouds increases tropical rainfall through the strengthened infrared cooling,which is insensitive to the change in carbon dioxide.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2014CB441403)the National Natural Science Foundation of China (Grant Nos. 41175003 & 41475003)
文摘The upward lightning(UL) initiated from the top of tall buildings(at least above 100 m) is a type of atmospheric discharge. Currently, we understand the nature of the UL from ground observations, but the corresponding theoretical research is lacking. Based on an existing bidirectional leader stochastic model, a stochastic parameterization scheme for the UL has been built and embedded in an existing two-dimensional thundercloud charge/discharge model. The ULs simulated from the experiments with two-dimensional high resolution agree generally with the observation results. By analyzing the charge structure of thunderstorm clouds, we determined the in-cloud environmental characteristics that favor the initiation of conventional cloud-to-ground(CG) flashes and analyzed the differences and similarities of some characteristics of the positive and the negative UL. Simulation results indicate that the positive ULs are typically other-lightning-triggered ULs(OLTUL) and are usually a discharge phenomenon between the ground and the lower positive charge region appearing below the main middle negative charge region. The effect of the previous in-cloud lightning(IC) process of space electrical field provides favorable conditions for the initiation of a positive UL. Its entire discharge process is limited, and the branches of the leader are fewer in number as its discharge is not sufficient. A negative UL is generally a discharge phenomenon of the dipole charge structure between the ground and the main negative charge region. The lower temperature stratification and the sinking of the hydrometeors typically initiate a negative UL. Negative ULs develop strongly and have more branches. The OLTUL is initiated mainly during the development stage of a thunderstorm, while the self-triggered UL(STUL) is initiated mainly during the dissipation stage of a thunderstorm.