Problems with data security impede the widespread application of cloud computing. Although data can be protected through encryption, effective retrieval of encrypted data is difficult to achieve using traditional meth...Problems with data security impede the widespread application of cloud computing. Although data can be protected through encryption, effective retrieval of encrypted data is difficult to achieve using traditional methods. This paper analyzes encrypted storage and retrieval technologies in cloud storage applications. A ranking method based on fully homomorphic encryption is proposed to meet demands of encrypted storage. Results show this method can improve efficiency.展开更多
Three new vorticity vectors have been proposed by Gao et al to study the two-dimensional tropical convection. In the present paper, phase relations between surface rain rate and the vorticity vectors are analysed with...Three new vorticity vectors have been proposed by Gao et al to study the two-dimensional tropical convection. In the present paper, phase relations between surface rain rate and the vorticity vectors are analysed with the calculations of lag correlation coefficients based on hourly zonally-averaged mass-integrated cloud-resolving simulation data. The cloud-resolving model is integrated with the vertical velocity, zonal wind, horizontal thermal and moisture advections, and sea surface temperature observed and derived from tropical ocean global atmosphere - coupled ocean atmosphere response experiment (TOGA-COARE) for 10 days. Maximum local increase of the vertical component of the convective vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interaction between vorticity and zonal gradient of ice heating. While maximum local increase of the vertical component of the moist vorticity vector leads maxfinum surface rain rate by 2 hours mainly because of the interaction between zonal specific humidity gradient and zonal buoyancy gradient. And the maximum local decrease of the zonal component of the dynamic vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interactions between vorticity and vertical pressure gradient as well as vorticity and buoyancy.展开更多
基金funded by the National Key Technology R & D Program of China under Grant No. 2008BAH37B07the National Natural Science Foundation of China under Grant No. 60970148the National Basic Research Program of China ("973" Program) under Grant No. 2007CB310806
文摘Problems with data security impede the widespread application of cloud computing. Although data can be protected through encryption, effective retrieval of encrypted data is difficult to achieve using traditional methods. This paper analyzes encrypted storage and retrieval technologies in cloud storage applications. A ranking method based on fully homomorphic encryption is proposed to meet demands of encrypted storage. Results show this method can improve efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40433007 and 40505012)the Knowledge Innovation Program of the Chinese Academy of Sciences (IAP07214)"Outstanding Oversea Scholars" project (Grant No 2005-2-17)
文摘Three new vorticity vectors have been proposed by Gao et al to study the two-dimensional tropical convection. In the present paper, phase relations between surface rain rate and the vorticity vectors are analysed with the calculations of lag correlation coefficients based on hourly zonally-averaged mass-integrated cloud-resolving simulation data. The cloud-resolving model is integrated with the vertical velocity, zonal wind, horizontal thermal and moisture advections, and sea surface temperature observed and derived from tropical ocean global atmosphere - coupled ocean atmosphere response experiment (TOGA-COARE) for 10 days. Maximum local increase of the vertical component of the convective vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interaction between vorticity and zonal gradient of ice heating. While maximum local increase of the vertical component of the moist vorticity vector leads maxfinum surface rain rate by 2 hours mainly because of the interaction between zonal specific humidity gradient and zonal buoyancy gradient. And the maximum local decrease of the zonal component of the dynamic vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interactions between vorticity and vertical pressure gradient as well as vorticity and buoyancy.