公路洒落物是影响交通安全的重要因素之一,为了解决中小尺度公路洒落物检测中的漏检、误检以及难以定位等问题,本文提出了一种图像引导和点云空间约束的公路洒落物检测定位方法。该方法使用改进的YOLOv7-OD网络处理图像数据获取二维目...公路洒落物是影响交通安全的重要因素之一,为了解决中小尺度公路洒落物检测中的漏检、误检以及难以定位等问题,本文提出了一种图像引导和点云空间约束的公路洒落物检测定位方法。该方法使用改进的YOLOv7-OD网络处理图像数据获取二维目标预测框信息,将目标预测框投影到激光雷达坐标系下得到锥形感兴趣区域(region of interest,ROI)。在ROI区域内的点云空间约束下,联合点云聚类和点云生成算法获得不同尺度的洒落物在三维空间中的检测定位结果。实验表明:改进的YOLOv7-OD网络在中尺度目标上的召回率和平均精度分别为85.4%和82.0%,相比YOLOv7网络分别提升6.6和8.0个百分点;在小尺度目标上的召回率和平均精度分别为66.8%和57.3%,均提升5.3个百分点;洒落物定位方面,对于距离检测车辆30~40 m处的目标,深度定位误差为0.19 m,角度定位误差为0.082°,实现了多尺度公路洒落物的检测和定位。展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
文摘公路洒落物是影响交通安全的重要因素之一,为了解决中小尺度公路洒落物检测中的漏检、误检以及难以定位等问题,本文提出了一种图像引导和点云空间约束的公路洒落物检测定位方法。该方法使用改进的YOLOv7-OD网络处理图像数据获取二维目标预测框信息,将目标预测框投影到激光雷达坐标系下得到锥形感兴趣区域(region of interest,ROI)。在ROI区域内的点云空间约束下,联合点云聚类和点云生成算法获得不同尺度的洒落物在三维空间中的检测定位结果。实验表明:改进的YOLOv7-OD网络在中尺度目标上的召回率和平均精度分别为85.4%和82.0%,相比YOLOv7网络分别提升6.6和8.0个百分点;在小尺度目标上的召回率和平均精度分别为66.8%和57.3%,均提升5.3个百分点;洒落物定位方面,对于距离检测车辆30~40 m处的目标,深度定位误差为0.19 m,角度定位误差为0.082°,实现了多尺度公路洒落物的检测和定位。
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。