Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
The detailed surface rainfall processes associated with landfalling typhoon Kaemi(2006) are investigated based on hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated for 6 da...The detailed surface rainfall processes associated with landfalling typhoon Kaemi(2006) are investigated based on hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated for 6 days with imposed large-scale vertical velocity, zonal wind, horizontal temperature and vapor advection from National Center for Environmental Prediction (NCEP) / Global Data Assimilation System (GDAS) data. The simulation data are validated with observations in terms of surface rain rate. The Root-Mean-Squared (RMS) difference in surface rain rate between the simulation and the gauge observations is 0.660 mm h^-1, which is smaller than the standard deviations of both the simulated rain rate (0.753 mm h^-1) and the observed rain rate (0.833 mm h^-1). The simulation data are then used to study the physical causes associated with the detailed surface rainfall processes during the landfall. The results show that time averaged and model domain-mean Ps mainly comes from large-scale convergence (QWVF) and local vapor loss (positive QWVT). Large underestimation (about 15%) of Ps will occur if QWVT and QCM (cloud source/sink) are not considered as contributors to Ps ,QWVF accounts for the variation of P during most of the integration time, while it is not always a contributor to Ps,Sometimes surface rainfall could occur when divergence is dominant with local vapor loss to be a contributor to Ps - Surface rainfall is a result ofmulti-timescale interactions. QWVE possesses the longest time scale and the lowest frequeney the second and QCM of variation with time and may exert impact on P on longer time scales. QWVF possesses longest time scale and lowest frequency and can explain most of the variation of Ps. QWVT possess shorter time scales and higher frequencies, which can explain more detailed variations in Ps. Partitioning analysis shows that stratiform rainfall is dominant from the morning of 26 July till the late night of 27 July. After that, convective rainfall dominates till about 1000 LST 28 July. Before 28 July, the variations of QWVT in rainfall-free regions contribute less to that of the domain-mean QWVT while after that they contribute much, which is consistent to the corresponding variations in their fractional coverage. The variations of QWVF in rainfall regions are the main contributors to that of the domain-mean QWVF, then the main contributors to the surface rain rate before the afternoon of 28 July.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) h...Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.展开更多
Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with...Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.展开更多
Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are co...Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are conducted and compared to the control experiment. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from NCEP/Global Data Assimilation System (GDAS). The results indicate that model predictions of rainfall are much more sensitive to the initial conditions than those of temperature and moisture. Further analyses of the surface rainfall equation and the moisture and cloud hydrometeor budgets reveal that the calculations of vapor condensation and deposition rates in the model account for the large sensitivities in rainfall simulations.展开更多
ABSTRACT Rainfall responses to doubled atmospheric carbon dioxide concentration were investigated through the analysis of two pairs of two-dimensional cloud-resolving model sensitivity experiments. One pair of experi...ABSTRACT Rainfall responses to doubled atmospheric carbon dioxide concentration were investigated through the analysis of two pairs of two-dimensional cloud-resolving model sensitivity experiments. One pair of experiments simulated pre-summer heavy rainfall over southern China around the summer solstice, whereas the other pair of experiments simulated tropical rainfall around the winter solstice. The analysis of the time and model domain mean heat budget revealed that the enhanced local atmospheric warming was associated with doubled carbon dioxide through the weakened infrared radiative cooling during the summer solstice. The weakened mean pre-summer rainfall corresponded to the weakened mean infrared radiative cooling. Doubled carbon dioxide increased the mean tropical atmospheric warming via the enhanced mean latent heat in correspondence with the strengthened mean infrared radiative cooling during the winter solstice. The enhanced mean tropical rainfall was associated with the increased mean latent heat.展开更多
Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the h...Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the high-resolution (4-km grid spacing) Weather Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The model initial and boundary conditions were derived from the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis 2 data. The model precipitation results were evaluated against the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. The results show that the WRF simulations can reason- ably reproduce the spatial distributions of daily mean precipitation and rainy days. However, the simulated frequency distributions of rainy days showed an overestimation of light precipitation, an underestimation of moderate to heavy precipitation, but a good representation of extreme precipitation. The downscaling approach was able to add value to the very heavy precipitation over the ocean since the convective processes are resolved by the high-resolution cloud-resolving model. Moreover, the water vapor budget analysis indi- cates that heavy precipitation is contributed mostly by the stronger moisture convergence; whereas, in less convective periods, the precipitation is more influenced by the surface evaporation. The simulated water vapor budgets imply the importance in the tropical monsoon region of cloud microphysics that affects the precipitation, atmospheric latent heating and, subsequently, the large-scale circulation.展开更多
This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensiti...This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still...BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.展开更多
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金National Basic Research Program of China (973 Program) (2009CB421505)National Natural Science Foundation of China (40775036)Knowledge Innovation Program of Chinese Academy of Sciences (IAP07214)
文摘The detailed surface rainfall processes associated with landfalling typhoon Kaemi(2006) are investigated based on hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated for 6 days with imposed large-scale vertical velocity, zonal wind, horizontal temperature and vapor advection from National Center for Environmental Prediction (NCEP) / Global Data Assimilation System (GDAS) data. The simulation data are validated with observations in terms of surface rain rate. The Root-Mean-Squared (RMS) difference in surface rain rate between the simulation and the gauge observations is 0.660 mm h^-1, which is smaller than the standard deviations of both the simulated rain rate (0.753 mm h^-1) and the observed rain rate (0.833 mm h^-1). The simulation data are then used to study the physical causes associated with the detailed surface rainfall processes during the landfall. The results show that time averaged and model domain-mean Ps mainly comes from large-scale convergence (QWVF) and local vapor loss (positive QWVT). Large underestimation (about 15%) of Ps will occur if QWVT and QCM (cloud source/sink) are not considered as contributors to Ps ,QWVF accounts for the variation of P during most of the integration time, while it is not always a contributor to Ps,Sometimes surface rainfall could occur when divergence is dominant with local vapor loss to be a contributor to Ps - Surface rainfall is a result ofmulti-timescale interactions. QWVE possesses the longest time scale and the lowest frequeney the second and QCM of variation with time and may exert impact on P on longer time scales. QWVF possesses longest time scale and lowest frequency and can explain most of the variation of Ps. QWVT possess shorter time scales and higher frequencies, which can explain more detailed variations in Ps. Partitioning analysis shows that stratiform rainfall is dominant from the morning of 26 July till the late night of 27 July. After that, convective rainfall dominates till about 1000 LST 28 July. Before 28 July, the variations of QWVT in rainfall-free regions contribute less to that of the domain-mean QWVT while after that they contribute much, which is consistent to the corresponding variations in their fractional coverage. The variations of QWVF in rainfall regions are the main contributors to that of the domain-mean QWVF, then the main contributors to the surface rain rate before the afternoon of 28 July.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。
文摘Convective processes affect large-scale environments through cloud-radiation interaction, cloud micro- physical processes, and surface rainfall processes. Over the last three decades, cloud-resolving models (CRMs) have demonstrated to be capable of simulating convective-radiative responses to an imposed large-scale forcing. The CRM-produced cloud and radiative properties have been utilized to study the convective- related processes and their ensemble effects on large-scale circulations. This review the recent progress on the understanding of convective processes with the use of CRM simulations, including precipitation processes; cloud microphysical and radiative processes; dynamical processes; precipitation efficiency; diurnal variations of tropical oceanic convection; local-scale atmosphere-ocean coupling processes; and tropical convective-radiative equilibrium states. Two different ongoing applications of CRMs to general circulation models (GCMs) are discussed: replacing convection and cloud schemes for studying the interaction between cloud systems and large-scale circulation, and improving the schemes for climate simulations.
基金supported by the National Natural Science Foundation of China(Grants Nos.40875025,40875030,and 40775033)the Shanghai Natural Science Foundation of China(Grant No.08ZR1422900)
文摘Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6-8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.
基金the National Key BasicResearch and Development Project of China under GrantNo. 2004CB418301the National Natural Sciences Foun-dation of China under Grant No. 40775031"Outstand-ing Oversea Scholars" Project No.2005-2-16.
文摘Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are conducted and compared to the control experiment. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from NCEP/Global Data Assimilation System (GDAS). The results indicate that model predictions of rainfall are much more sensitive to the initial conditions than those of temperature and moisture. Further analyses of the surface rainfall equation and the moisture and cloud hydrometeor budgets reveal that the calculations of vapor condensation and deposition rates in the model account for the large sensitivities in rainfall simulations.
基金supported by 985 Program of Zhejiang University under Grant No.188020+193432602/215National Natural Science Foundation of China (Grant No.41175047)+3 种基金the R&D Special Fund for Public Welfare Industry by the Ministry of Finance and the Ministry of Science and Technology (Grant Nos.GYHY201006014 and 20100503310)the Basic Research Project of the State Key Laboratory of Severe Weather (12011LAS-B14)supported by the National Key Basic Research and Development Project of China under Grant Nos.2013CB430103 and 2011CB403405the National Natural Science Foundation of China under Grant Nos.41375058 and 41175065
文摘ABSTRACT Rainfall responses to doubled atmospheric carbon dioxide concentration were investigated through the analysis of two pairs of two-dimensional cloud-resolving model sensitivity experiments. One pair of experiments simulated pre-summer heavy rainfall over southern China around the summer solstice, whereas the other pair of experiments simulated tropical rainfall around the winter solstice. The analysis of the time and model domain mean heat budget revealed that the enhanced local atmospheric warming was associated with doubled carbon dioxide through the weakened infrared radiative cooling during the summer solstice. The weakened mean pre-summer rainfall corresponded to the weakened mean infrared radiative cooling. Doubled carbon dioxide increased the mean tropical atmospheric warming via the enhanced mean latent heat in correspondence with the strengthened mean infrared radiative cooling during the winter solstice. The enhanced mean tropical rainfall was associated with the increased mean latent heat.
基金support by the National Taiwan University and the high performance computer center in the National Central University.W.H.GAO was supported by the National Basic Research Program of China(Grant No.2013CB955804,2011CB403401)2012 National abroad personnel science and technology project.C.-H.SUI was supported by the National Science Council(Grant No.100-2745-M-002-003-ASP)
文摘Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the high-resolution (4-km grid spacing) Weather Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The model initial and boundary conditions were derived from the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis 2 data. The model precipitation results were evaluated against the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. The results show that the WRF simulations can reason- ably reproduce the spatial distributions of daily mean precipitation and rainy days. However, the simulated frequency distributions of rainy days showed an overestimation of light precipitation, an underestimation of moderate to heavy precipitation, but a good representation of extreme precipitation. The downscaling approach was able to add value to the very heavy precipitation over the ocean since the convective processes are resolved by the high-resolution cloud-resolving model. Moreover, the water vapor budget analysis indi- cates that heavy precipitation is contributed mostly by the stronger moisture convergence; whereas, in less convective periods, the precipitation is more influenced by the surface evaporation. The simulated water vapor budgets imply the importance in the tropical monsoon region of cloud microphysics that affects the precipitation, atmospheric latent heating and, subsequently, the large-scale circulation.
基金supported by the National Key Basic Research and Development Project of China under Grant 2011CB403405the Chinese Special Scientific Research Project for Public Interest under Grant GYHY200806009+1 种基金the National Natural Science Foundation of China under Grants 41075039 and 41175065the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘This study investigates the effects of vertical wind shear on the torrential rainfall response to the large-scale forcing using a rainfall separation analysis of a pair of two-dimensional cloud-resolving model sensitivity experiments for a pre-summer heavy rainfall event over southern China from 3-8 June 2008 coupled with National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) data.The rainfall partitioning analysis based on the surface rainfall budget indicates that the exclusion of vertical wind shear decreases the contribution to total rainfall from the largest contributor,which is the rainfall associated with local atmospheric drying,water vapor divergence,and hydrometeor loss/convergence,through the reduction of the rainfall area and reduced rainfall during the rainfall event.The removal of vertical wind shear increases the contribution to total rainfall from the rainfall associated with local atmospheric drying,water vapor convergence,and hydrometeor loss/convergence through the expansion of the rainfall area and enhanced rainfall.The elimination of vertical wind shear enhances heavy rainfall and expands its area,whereas it reduces moderate rainfall and its area.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
基金Supported by the Project of NINGBO Leading Medical Health Discipline,No.2022-B11Ningbo Natural Science Foundation,No.202003N4206Public Welfare Foundation of Ningbo,No.2021S108.
文摘BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.