期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
使用中心预测-聚类的3D箱体实例分割方法
1
作者 杨雨桐 和红杰 《计算机工程与应用》 CSCD 北大核心 2024年第10期132-139,共8页
随着深度学习技术在工业领域的大量部署,应用于运输、装卸、包装、分拣等环节的自动化系统成为仓储物流行业的研究热点。针对机器人箱体拆垛场景提出一个点云中心预测-聚类网络(center prediction-clustering network,CPCN),对箱体垛进... 随着深度学习技术在工业领域的大量部署,应用于运输、装卸、包装、分拣等环节的自动化系统成为仓储物流行业的研究热点。针对机器人箱体拆垛场景提出一个点云中心预测-聚类网络(center prediction-clustering network,CPCN),对箱体垛进行实例分割,并计算每个箱体的上表面中心坐标。CPCN在传统的语义-实例联合分割结构的基础上,为实例分割分支设计了中心预测模块和中心强化模块。中心预测模块帮助定位实例中心以避免中心点分割错误,中心强化模块令属于同一实例的点在特征空间中向中心聚集,二者有效增强了实例特征的辨识能力。在实例特征处理部分设计的中心-实例聚类方法直接对实例特征进行距离度量来计算实例标签,大幅减少了计算时间。在箱体数据集上进行的实验表明,与现有方法相比CPCN在实例分割任务中的平均精确率最低提高了0.7个百分点,最高提高了17.2个百分点,预测实例中心的准确率达到94.4%,中心偏移量低至13.70 mm,且推理速度快于同类型的联合分割网络,对于箱体拆垛任务更有针对性,具有良好的应用价值。 展开更多
关键词 3D点云 实例分割 箱体拆垛 中心预测 聚类
下载PDF
动态粒度结合中心点算法在电力设备缺陷管控中的应用研究
2
作者 万少明 代金磊 《中国高新科技》 2024年第3期79-81,共3页
针对电力设备缺陷管控问题,文章研究提出了一种基于改进k-中心点聚类算法与动态粒度的电力设备缺陷管控模型。首先,利用改进的k-中心点聚类算法对设备缺陷数据进行聚类处理;然后,将动态粒度与改进算法进行结合,用于构建缺陷管控模型。... 针对电力设备缺陷管控问题,文章研究提出了一种基于改进k-中心点聚类算法与动态粒度的电力设备缺陷管控模型。首先,利用改进的k-中心点聚类算法对设备缺陷数据进行聚类处理;然后,将动态粒度与改进算法进行结合,用于构建缺陷管控模型。结果表明,缺陷管控模型的数据聚类正确率为93.07%,聚类效率能够达到90.07%,同时数据识别准确率、召回率和F1值分别为93.27%、93.52%和0.951,均优于对比方法。这说明研究构建的电力设备缺陷管控模型显著可以提高设备的可靠性和稳定性。 展开更多
关键词 动态粒度 k-中心点聚类算法 电力设备 缺陷管控
下载PDF
自定义聚类中心点的快速K-means聚类点云精简算法
3
作者 王世刚 关红利 《工业控制计算机》 2024年第8期123-125,共3页
针对传统K-means算法在随机选取聚类中心点出现聚类失败及点云数据重建时在相对平坦的区域出现孔洞的问题,提出一种GK-means的改进聚类算法对点云数据进行精简。该算法首先规定数值K作为最终聚类个数的限定,然后对选点策略进行改进,采... 针对传统K-means算法在随机选取聚类中心点出现聚类失败及点云数据重建时在相对平坦的区域出现孔洞的问题,提出一种GK-means的改进聚类算法对点云数据进行精简。该算法首先规定数值K作为最终聚类个数的限定,然后对选点策略进行改进,采用最远点采样选取聚类中心,对簇进行细分,计算所有点到聚类中心的欧氏距离,获取最小值所在的位置,放进最小距离所在的簇。实验结果表明:改进后的K-means算法能够使算法成功的概率提高且运行速度较快,对点云进行精简时,特征区域完整地保留了点云模型的细节特征,重建结果具有较高的光顺性。 展开更多
关键词 聚类中心 迭代 GK-means算法 点云精简
下载PDF
基于参数优化VMD和改进K聚类判据融合的配电网故障选线方法 被引量:5
4
作者 王建元 张宇辉 刘铖 《南方电网技术》 CSCD 北大核心 2023年第7期135-145,共11页
针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用... 针对现有暂态量选线方法易受到故障相角、过渡电阻、噪声、谐波及判据阈值的影响,提出基于参数优化变分模态分解(variational mode decomposition,VMD)和改进K聚类判据融合的选线方法。首先对分解过程的3个关键性参数进行动态优化,利用信号频谱及分量特性确定VMD分解层数,并以算术优化算法求取最佳惩罚因子,剔除了工频、噪声及谐波干扰,再根据分解层数与各模态频谱确定模态中心频率以提高分解效率。其次,以优化后的VMD获取余弦相似度、高频幅值和直流能量作为互补的故障选线判据值。最后以改进K聚类算法实现多判据融合,弥补了单一判据的局限性。理论分析、仿真与实测结果表明,所提方法适用于分布式电源接入的电网,不受故障位置、故障相角及过渡电阻的影响,具有优异的抗谐波与噪声干扰性能。 展开更多
关键词 故障选线 变分模态分解 算术优化算法 K中心点聚类 抗噪性
下载PDF
基于Tukey规则与初始中心点优化的K⁃means聚类改进算法 被引量:2
5
作者 柳菁 邱紫滢 +1 位作者 郭茂祖 余冬华 《数据采集与处理》 CSCD 北大核心 2023年第3期643-651,共9页
针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,... 针对K⁃means聚类算法存在的初始中心点选择及异常点、离群点极易影响聚类结果等待改进问题,提出了一个基于Tukey规则与优化初始中心点选择的K⁃means改进算法。该算法利用Tukey规则构造核心与非核心子集,将聚类过程划分成2个阶段。同时,在核心子集上执行中心点逐个递增优化选择策略,选出初始中心点。在来自UCI的20个数据集上聚类结果表明,本文提出的算法优于K⁃means++聚类算法,有效地提升了聚类性能。 展开更多
关键词 数据挖掘 K⁃means聚类算法 Tukey规则 中心点优化
下载PDF
基于密度的K-means聚类中心选取的优化算法 被引量:48
6
作者 周炜奔 石跃祥 《计算机应用研究》 CSCD 北大核心 2012年第5期1726-1728,共3页
针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获... 针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获得最优聚类。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。 展开更多
关键词 K-均值 数据挖掘 聚类中心 垂直中点 密度
下载PDF
基于最近邻原则的半监督聚类算法 被引量:7
7
作者 计华 张化祥 孙晓燕 《计算机工程与设计》 CSCD 北大核心 2011年第7期2455-2458,共4页
基于最近邻原则的半监督聚类算法是以基于最近邻的聚类中心求解算法为基础的。在基于最近邻的聚类中心求解算法中,用相似度矩阵记录数据点间的相似程度,由目标函数最小值求得聚类的类中心点。在基于最近邻原则的半监督聚类算法中,根据... 基于最近邻原则的半监督聚类算法是以基于最近邻的聚类中心求解算法为基础的。在基于最近邻的聚类中心求解算法中,用相似度矩阵记录数据点间的相似程度,由目标函数最小值求得聚类的类中心点。在基于最近邻原则的半监督聚类算法中,根据约束信息来调整相似度矩阵G,数据点间相似度的变化引起了数据点间加权欧式距离的变化,由此更新加权欧式距离矩阵M,最后执行聚类中心求解算法完成聚类。大量实验结果表明,该算法能获得较好的聚类结果。 展开更多
关键词 最近邻原则 加权欧式距离矩阵 半监督聚类 类中心点 约束信息
下载PDF
一种优化初始中心的K-means聚类算法 被引量:22
8
作者 邓海 覃华 孙欣 《计算机技术与发展》 2013年第11期42-45,共4页
针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相... 针对传统K-means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这K对高密度点的均值作为聚类的初始中心,再进行Kmeans聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。 展开更多
关键词 K—means聚类 聚类中心 高密度点 垂直中心点
下载PDF
K均值聚类算法初始质心选择的改进 被引量:15
9
作者 孙可 刘杰 王学颖 《沈阳师范大学学报(自然科学版)》 CAS 2009年第4期448-450,共3页
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的... 聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的随机指定初始质心的缺点,提出了基于密度和最近邻相似度的初始质心选择算法,实验显示该算法可以生成质量较高而且较稳定的聚类结果,但是改进的算法需要事先设定最近邻相似度的阈值计算量较大等缺点,还有待改进。 展开更多
关键词 聚类 K均值聚类算法 初始质心 密度 最近邻相似度
下载PDF
一种聚类神经网络初始聚类中心的确定方法 被引量:5
10
作者 孙辉 李文 聂冰 《系统仿真学报》 CAS CSCD 2004年第4期775-777,共3页
在基于聚类神经网络提取模糊规则方法中,其初始聚类数及聚类中心往往是事先给定的,这样会给规则提取带来一定的盲目性,并影响神经网络的学习时间和聚类效果。本文提出了一种根据测量数据集自动确定聚类神经网络初始聚类中心的方法,该方... 在基于聚类神经网络提取模糊规则方法中,其初始聚类数及聚类中心往往是事先给定的,这样会给规则提取带来一定的盲目性,并影响神经网络的学习时间和聚类效果。本文提出了一种根据测量数据集自动确定聚类神经网络初始聚类中心的方法,该方法可客观地确定聚类数和初始聚类中心,能够有效地缩短神经网络的学习时间。 展开更多
关键词 初始聚类中心 聚类算法 确切度 孤立点
下载PDF
基于改进聚类中心分析法的红外行人分割 被引量:3
11
作者 高潮 田翠翠 郭永彩 《计算机工程》 CAS CSCD 北大核心 2011年第6期151-152,156,共3页
远红外图像中人体目标分割阈值自动选取算法的鲁棒性较差。为此,从远红外图像的成像机理出发,提出一种改进的K均值聚类中心分析法。当所属类别不同时,聚类前呈线性分布的聚类中心会在聚类后明显转折。根据该特点,将聚类后待测类别的实... 远红外图像中人体目标分割阈值自动选取算法的鲁棒性较差。为此,从远红外图像的成像机理出发,提出一种改进的K均值聚类中心分析法。当所属类别不同时,聚类前呈线性分布的聚类中心会在聚类后明显转折。根据该特点,将聚类后待测类别的实际聚类中心值与理论聚类中心预测值的绝对差值作为测度函数,选择转折点并确定图像分割的阈值。实验结果表明,该算法具有良好的鲁棒性与抗噪性。 展开更多
关键词 红外图像分割 K均值聚类中心分析 转折点选取 行人探测
下载PDF
基于狮群优化的改进K-Means聚类算法研究 被引量:8
12
作者 胡啸 王玲燕 +2 位作者 张浩宇 常宇超 王银 《控制工程》 CSCD 北大核心 2022年第11期1996-2002,共7页
针对K-Means聚类算法对初始聚类中心选择依赖性强的问题,利用狮群优化算法的快速收敛性及易于获取全局最优解的优势,提出了一种基于狮群优化的改进K-Means聚类算法。通过狮群优化算法对狮王不断迭代更新,优化狮王位置,将算法停止执行时... 针对K-Means聚类算法对初始聚类中心选择依赖性强的问题,利用狮群优化算法的快速收敛性及易于获取全局最优解的优势,提出了一种基于狮群优化的改进K-Means聚类算法。通过狮群优化算法对狮王不断迭代更新,优化狮王位置,将算法停止执行时的狮王最优解作为聚类中心,替代传统算法经过随机初始化得到具有不确定因素的聚类中心。选择UCI数据集进行验证,实验结果表明,改进算法的聚类效果较好,有效降低了K-Means对初始聚类中心的依赖。将改进的K-Means聚类算法应用于点云精简过程,获得了较好的点云精简效果。 展开更多
关键词 聚类分析 K-MEANS聚类算法 狮群优化算法 聚类中心 点云精简
下载PDF
云计算下的一种数据挖掘算法的研究 被引量:5
13
作者 刘继华 强彦 《科技通报》 北大核心 2016年第12期133-137,共5页
如何进行云计算下的数据挖掘一直以来都是研究的重点,本文针对传统挖掘算法K-meas的不足,提出基于数据采样和分布密度的改进方法来获取算法的中心点,在聚类中构造函数提高了聚类效果,并对云计算下的Map/Reduce模型进行了函数改进,仿真... 如何进行云计算下的数据挖掘一直以来都是研究的重点,本文针对传统挖掘算法K-meas的不足,提出基于数据采样和分布密度的改进方法来获取算法的中心点,在聚类中构造函数提高了聚类效果,并对云计算下的Map/Reduce模型进行了函数改进,仿真实验通过对不同的数据集进行实验,从聚类分析比较,系统运行时间,加速比等方面说明了本文的算法适合在云计算下的数据挖掘具有一定的优越性。 展开更多
关键词 云计算 K-meas Map/Reduce模型 中心点 聚类
下载PDF
一种优化初始化中心的k均值web信息聚类算法 被引量:2
14
作者 张世博 周义明 《北京石油化工学院学报》 2011年第4期55-58,共4页
k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于... k-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用。由于k-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果。针对k-means算法所存在的问题,构造了文本集合的相似度矩阵,基于平均相似度集合通过排序迭代优选出了初始中心点。实验表明此算法可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。 展开更多
关键词 K均值 聚类 初始中心点 优化
下载PDF
动态分配聚类中心的改进K均值聚类算法 被引量:24
15
作者 程艳云 周鹏 《计算机技术与发展》 2017年第2期33-36,41,共5页
K均值算法(KMEANS)是一种应用广泛的经典聚类算法,但其有两个缺陷,即对初始聚类中心敏感及需要人工确定聚类的个数,因而聚类结果的准确率较低。针对K均值聚类算法现存的两个缺陷,为提高算法的精确性与稳定性,以及改善聚类性能,提出了一... K均值算法(KMEANS)是一种应用广泛的经典聚类算法,但其有两个缺陷,即对初始聚类中心敏感及需要人工确定聚类的个数,因而聚类结果的准确率较低。针对K均值聚类算法现存的两个缺陷,为提高算法的精确性与稳定性,以及改善聚类性能,提出了一种改进的K均值算法。该算法通过定义的平均类间最大相似度指标值来确定最佳的K值,将所有数据点中密度较高的点作为备选聚类中心,将备选点中密度最大的两个点作为聚类中心进行初步聚类计算并更新当前聚类中心。当计算得到的平均类间最大相似度现值小于前次计算值,则依据相对距离原则从备选点中动态选择下一个聚类中心;否则,将当前的聚类中心作为最佳初始聚类中心进行K均值聚类计算。实验结果表明,改进后的算法不仅能够有效地提高聚类计算的精确性与稳定性,而且还能缩短聚类计算时间,具有一定的技术优势和应用前景。 展开更多
关键词 KMEANS算法 动态聚类中心 相对距离 高密度点
下载PDF
基于分类权与质心驱动的无监督学习算法 被引量:2
16
作者 刘开第 刘昕 +1 位作者 赵奇 周少玲 《自动化学报》 EI CSCD 北大核心 2009年第5期526-531,共6页
为了充分挖掘隐藏在样本向量中的空间信息和知识信息:用聚类点代替类均值,把提取指标对聚类所做贡献的量化值定义为指标分类权;用分类权定义样本点与聚类点的加权距离,使之作为样本与类之间的相似性度量更具合理性,即将加权距离转化为... 为了充分挖掘隐藏在样本向量中的空间信息和知识信息:用聚类点代替类均值,把提取指标对聚类所做贡献的量化值定义为指标分类权;用分类权定义样本点与聚类点的加权距离,使之作为样本与类之间的相似性度量更具合理性,即将加权距离转化为样本隶属度.为了消除序贯算法产生的随机性,用样本的K类隶属度作为点质量的样本质点组的质心,修正当前的K类聚类点,由此建立基于分类权和质心驱动的搜索聚类点的迭代算法.IRIS数据检验结果表明,新算法的聚类效果与稳定性都优于已有的无监督学习方法. 展开更多
关键词 无监督数据 聚类点聚类 分类权 加权距离 质心
下载PDF
基于优化初始中心点的K-means文本聚类算法 被引量:8
17
作者 张世博 《计算机与数字工程》 2011年第10期30-31,共2页
K-means算法终止于一个局部最优状态,所以初始中心点的选择会在很大程度上影响其聚类效果。该文针对K-means算法所存在的问题,提出了一种优化初始中心点的算法。实验表明可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。
关键词 K均值 聚类 初始中心点
下载PDF
汉语文本聚类及其算法设计 被引量:3
18
作者 陈炯 范卓华 张虎 《山西电子技术》 2005年第2期29-30,45,共3页
主要针对传统的聚类算法倾向于识别大小类似的球形聚类簇,且对离群数据较为敏感等问题,利用聚类簇代表点选取的方法,同时结合基于人进行聚类判断所遵循的基本原则,即聚类中对象间距离应小于聚类间距离,设计了一种有效的聚类算法,实验结... 主要针对传统的聚类算法倾向于识别大小类似的球形聚类簇,且对离群数据较为敏感等问题,利用聚类簇代表点选取的方法,同时结合基于人进行聚类判断所遵循的基本原则,即聚类中对象间距离应小于聚类间距离,设计了一种有效的聚类算法,实验结果表明算法是有效的。 展开更多
关键词 代表点 聚类簇 聚类中心 汉语文本聚类 算法设计 聚类分析法
下载PDF
基于密度与网格的聚类算法的改进 被引量:2
19
作者 邢长征 张园 《计算机工程与应用》 CSCD 北大核心 2016年第22期81-85,共5页
针对传统基于密度树网格聚类算法中存在人为设置密度阈值、重复查询邻域内对象以及边界点处理不当等问题,提出了一种改进的基于密度与网格的聚类算法。该算法首先将全部网格的平均密度值作为其密度阈值,避免了人为设置密度阈值的偏差;... 针对传统基于密度树网格聚类算法中存在人为设置密度阈值、重复查询邻域内对象以及边界点处理不当等问题,提出了一种改进的基于密度与网格的聚类算法。该算法首先将全部网格的平均密度值作为其密度阈值,避免了人为设置密度阈值的偏差;其次采用自适应算法确定密度半径,使其能适用到动态的聚类中;然后采用对邻域外未标记的点作为下一个核心点,依据分类情况进行扩展,对邻域对象的查询不再出现重复;最后对边界点进行了处理,增强了算法的聚类精度。实验结果表明,改进的算法在时间的效率及精度方面均有提高,并且能更好地适应聚类的动态性。 展开更多
关键词 重心点 密度 网格 动态 聚类 边界点
下载PDF
一种快速全局中心模糊聚类方法 被引量:5
20
作者 孙冬璞 谭洁琼 《哈尔滨理工大学学报》 CAS 北大核心 2019年第4期110-117,共8页
针对模糊C均值算法对初始中心敏感、容易陷入局部最优解,且算法迭代速度慢等问题,依据模糊聚类的全局中心理论,建立了一种快速全局中心模糊聚类系统模型,并给出了相关理论分析和算法流程。该模型通过DKC值方案对各数据成员进行密集度分... 针对模糊C均值算法对初始中心敏感、容易陷入局部最优解,且算法迭代速度慢等问题,依据模糊聚类的全局中心理论,建立了一种快速全局中心模糊聚类系统模型,并给出了相关理论分析和算法流程。该模型通过DKC值方案对各数据成员进行密集度分析来确定初始质心,并结合AM度量提出自定义寻优函数,依据该函数在算法运行的每一个阶段来逐一动态增加聚类中心,直至算法收敛。通过实验对比和验证,该过程降低了随机选取聚类中心对聚类结果的影响,跳出局部最优解,减少计算量,具有更高的聚类精度和更快的收敛速度。 展开更多
关键词 模糊聚类 全局中心 DKC AM度量 噪声点
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部