The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past deca...The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.展开更多
The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adoptin...The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.展开更多
Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbid...Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature,solute concentration,and initial cluster distribution.The results are presented for different temperatures and solute concentrations,compared to experimental data available.They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.展开更多
The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics a...The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by inv...A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a...In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
We study the dynamical states of the 30 most massive galaxy clusters in the TNG100 simulation at redshift z = 0 using three types of tracers: stars, dark matter particles and satellite galaxies. If the massive galaxy ...We study the dynamical states of the 30 most massive galaxy clusters in the TNG100 simulation at redshift z = 0 using three types of tracers: stars, dark matter particles and satellite galaxies. If the massive galaxy cluster is spherically symmetric and relaxed, we can obtain the underlying total mass distribution accurately from its dynamical tracers using the spherical Jeans equations. Although the three tracers of clusters have very different number densities, velocity dispersions and anisotropies, they still trace the same total mass profile. We obtain the total mass profiles of clusters using these tracers separately and compare them with the true mass distributions. We find that:(1) the kinematics of dark matter trace the total mass of all clusters well and the mass inferred from dark matter are generally consistent with the true mass profiles with relative deviations smaller than ~ 25% at all radii;(2) stars in ~ 60% massive clusters are approaching equilibrium and the total mass of these clusters inferred from stars have relative deviations smaller than ~50% at all radii. Stellar substructures are rich and the mass inferred from stars tend to be over-estimated in the inner region;and(3) satellite galaxies are unrelaxed in the inner region and become more relaxed as the radius increases. The total mass inferred from satellites are under-estimated in all regions.展开更多
Conceptual clustering is mainly used for solving the deficiency and incompleteness of domain knowledge. Based on conceptual clustering technology and aiming at the institutional framework and characteristic of Web the...Conceptual clustering is mainly used for solving the deficiency and incompleteness of domain knowledge. Based on conceptual clustering technology and aiming at the institutional framework and characteristic of Web theme information, this paper proposes and implements dynamic conceptual clustering algorithm and merging algorithm for Web documents, and also analyses the super performance of the clustering algorithm in efficiency and clustering accuracy. Key words conceptual clustering - clustering center - dynamic conceptual clustering - theme - web documents clustering CLC number TP 311 Foundation item: Supported by the National “863” Program of China (2002AA111010, 2003AA001032)Biography: WANG Yun-hua(1979-), male, Master candidate, research direction: knowledge engineering and data mining.展开更多
Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calcula...Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.展开更多
Most of the existing security Mobicast routing protocols are not suitable for the monitoring applications with higher quality of service (QoS) requirement. A QoS dynamic clustering secure multicast scheme (QoS-DCSM...Most of the existing security Mobicast routing protocols are not suitable for the monitoring applications with higher quality of service (QoS) requirement. A QoS dynamic clustering secure multicast scheme (QoS-DCSMS) based on Mobicast and multi-level IxTESLA protocol for large-scale tracking sensornets is presented in this paper. The multicast clusters are dynamically formed according to the real-time status of nodes, and the cluster-head node is responsible for status review and certificating management of cluster nodes to ensure the most optimized QoS and security of multicast in this scheme. Another contribution of this paper is the optimal QoS security authentication algorithm, which analyzes the relationship between the QoS and the level Mofmulti-level oTESLA. Based on the analysis and simulation results, it shows that the influence to the network survival cycle ('NSC) and real-time communication caused by energy consumption and latency in authentication is acceptable when the optimal QoS security authentication algorithm is satisfied.展开更多
Absolute proper motions and radial velocities of 202 open clusters in the solar neighborhood, which can be used as tracers of the Galactic disk, are used to investigate the kinematics of the Galaxy in the solar vicini...Absolute proper motions and radial velocities of 202 open clusters in the solar neighborhood, which can be used as tracers of the Galactic disk, are used to investigate the kinematics of the Galaxy in the solar vicinity, including the mean heliocentric velocity components (u1, u2, u3) of the open cluster system, the characteristic velocity dispersions (σ1,σ2,σ3), Oort constants (A, B) and the large-scale radial motion parameters (C, D) of the Galaxy. The results derived from the observational data of proper motions and radial velocities of a subgroup of 117 thin disk young open clusters by means of a maximum likelihood algorithm are: (u1,u2,u3) = (-16.1 ± 1.0,-7.9 ±1.4,-10.4±1.5) km·s^-1, (σ1,σ2,σ3) = (17.0±0.7, 12.2±0.9, 8.0±1.3) km·S^-1, (A, B) = (14.8±1.0, - 13.0±2.7) km·s^-1 kpc^-1, and (C, D) = (1.5 ± 0.7, -1.2 ±1.5) km·s^-1 kpc^-1. A discussion on the results and comparisons with what was obtained by other authors is given.展开更多
We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at...We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered protoglobular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.展开更多
Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy ma...Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.展开更多
The effect of anisotropy caused by a confining potential on the properties of fermionic cold atoms in a triangular optical lattice is systematically investigated by using the dynamical cluster approximation combined w...The effect of anisotropy caused by a confining potential on the properties of fermionic cold atoms in a triangular optical lattice is systematically investigated by using the dynamical cluster approximation combined with the continuous time quantum Monte-Carlo algorithm. The quantum phase diagrams which reflect the temperature-interaction relation and the competition between the anisotropic parameter and the interaction are presented with full consideration of the anisotropy of the system. Our results show that the system undergoes a transition from Fermi liquid to Mott insulator when the repulsive interaction reaches a critical value. The Kondo effect also can be observed in this system and the pseudogap is suppressed at low temperatures due to the Kondo effect. A feasible experiment protocol to observe these phenomena in an anisotropic triangular optical lattice with cold atoms is proposed, in which the hopping terms are closely related to the lattice confining potential and the atomic interaction can be adjusted via the Feshbach resonance.展开更多
An algorithm was proposed to fast recognize three types of underwater micro-terrain, i.e. the level, the gradient and the uneven. With pendulum single beam bathymeter, the hard level concrete floor, the random uneven ...An algorithm was proposed to fast recognize three types of underwater micro-terrain, i.e. the level, the gradient and the uneven. With pendulum single beam bathymeter, the hard level concrete floor, the random uneven floor and the gradient wood panel (8-) were ultrasonically detected 20 times, respectively. The results show that the algorithm is right from fact that the first clustering values of the uneven are all less than the threshold value of 60.0% that is obtained by the level and gradient samples. The algorithm based on the dynamic clustering theory can effectively eliminate the influences of the exceptional elevation values produced by the disturbances resulted from the grazing angle, the characteristic of bottom material and environmental noises, and its real-time capability is good. Thus, the algorithm provides a foundation for the next restructuring of the micro-terrain.展开更多
We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line ...We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line and the [Ne III] finestructure line at 15.55 μm for these models at different inclinations of 0°, 30° and 60°. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock models with lower stellar velocity (≤ 5 km s^-1) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines point outward from molecular clouds. In bow shock models, the directions of these velocities depend on the speed of stars. The central velocities of these lines are consistent with the stellar motion in the high stellar speed cases, but they are opposite directions from the stellar motion in the low speed cases. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models from champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the H30α line.展开更多
A Projection Pursuit Dynamic Cluster(PPDC) model optimized by Memetic Algorithm(MA) was proposed to solve the practical problems of nonlinearity and high dimensions of sample data, which appear in the context of evalu...A Projection Pursuit Dynamic Cluster(PPDC) model optimized by Memetic Algorithm(MA) was proposed to solve the practical problems of nonlinearity and high dimensions of sample data, which appear in the context of evaluation or prediction in complex systems. Projection pursuit theory was used to determine the optimal projection direction; then dynamic clusters and minimal total distance within clusters(min TDc) were used to build a PPDC model. 17 agronomic traits of 19 tomato varieties were evaluated by a PPDC model. The projection direction was optimized by Simulated Annealing(SA) algorithm, Particle Swarm Optimization(PSO), and MA. A PPDC model,based on an MA, avoids the problem of parameter calibration in Projection Pursuit Cluster(PPC) models. Its final results can be output directly, making the cluster results objective and definite. The calculation results show that a PPDC model based on an MA can solve the practical difficulties of nonlinearity and high dimensionality of sample data.展开更多
文摘The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.
基金supported by the Special Funds for Major State Basic Research Project of China(973)(Nos.2007CB925004 and 2008CB717802)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N35)+2 种基金National Natural Science Foundation of China(No.11005124)the China Postdoctoral Science Foundation Funded Project(No.20100470863)Director Grants of CASHIPS.Part of the calculations were performed in the Center for Computational Science of CASHIPS
文摘The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.
基金the CAS-TWAS President’s Fellowship Programme for this doctoral fellowship(Grant No.2016CTF004)。
文摘Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temperature,solute concentration,and initial cluster distribution.The results are presented for different temperatures and solute concentrations,compared to experimental data available.They show little impact of initial cluster distribution beyond a certain relaxation time and that highly dilute alloys with monomers only present a significantly different behavior from denser alloys or ones with different initial cluster distributions.
基金the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2017YFB0702201).
文摘The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金The authors are very grateful to Dr.Y.Dai of Spallation Materials Technology Spallation Neutron Source Division,Paul Scherrer Institute for his helpful comments and discussions.This work was supported by special Funds for Major State Basic Research Project of China(973)under Grant nos.2007CB925004 and 2008CB717802Knowledge Innovation Program of Chinese Academy of Sciences under Grant no.KJCX2-YW-N35+1 种基金National Science Foundation of China under Grant no.11005124China Postdoctoral Science Foundation funded project under Grant no.20100470863,and Director Grants of CASHIPS.Part of the calculations were performed in Center for Computational Science of CASHIPS.
文摘A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiationwith neutron,by involving different types of objects,adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth.The calculated results under different conditions are in good agreement with experiments much well.The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions(energies and fluences)and material conditions(system temperature and existent sinks),by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks(dislocation lines and grain boundaries).The model,coded as IRadMat,would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674207)
文摘In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
基金partly supported by the National Key Research and Development Program of China(No.2018YFA0404501)the National Natural Science Foundation of China(Grant Nos.11821303,11761131004 and 11761141012)。
文摘We study the dynamical states of the 30 most massive galaxy clusters in the TNG100 simulation at redshift z = 0 using three types of tracers: stars, dark matter particles and satellite galaxies. If the massive galaxy cluster is spherically symmetric and relaxed, we can obtain the underlying total mass distribution accurately from its dynamical tracers using the spherical Jeans equations. Although the three tracers of clusters have very different number densities, velocity dispersions and anisotropies, they still trace the same total mass profile. We obtain the total mass profiles of clusters using these tracers separately and compare them with the true mass distributions. We find that:(1) the kinematics of dark matter trace the total mass of all clusters well and the mass inferred from dark matter are generally consistent with the true mass profiles with relative deviations smaller than ~ 25% at all radii;(2) stars in ~ 60% massive clusters are approaching equilibrium and the total mass of these clusters inferred from stars have relative deviations smaller than ~50% at all radii. Stellar substructures are rich and the mass inferred from stars tend to be over-estimated in the inner region;and(3) satellite galaxies are unrelaxed in the inner region and become more relaxed as the radius increases. The total mass inferred from satellites are under-estimated in all regions.
文摘Conceptual clustering is mainly used for solving the deficiency and incompleteness of domain knowledge. Based on conceptual clustering technology and aiming at the institutional framework and characteristic of Web theme information, this paper proposes and implements dynamic conceptual clustering algorithm and merging algorithm for Web documents, and also analyses the super performance of the clustering algorithm in efficiency and clustering accuracy. Key words conceptual clustering - clustering center - dynamic conceptual clustering - theme - web documents clustering CLC number TP 311 Foundation item: Supported by the National “863” Program of China (2002AA111010, 2003AA001032)Biography: WANG Yun-hua(1979-), male, Master candidate, research direction: knowledge engineering and data mining.
基金Supported by the Key Projection of Science and Technology Research of Ministry of Education of China (107057)the Science & Technology Fund for Students of Hohai University (K200803)
文摘Wireless Sensor Networks for Rainfall Monitoring (RM-WSNs) is a sensor network for the large-scale regional and moving rainfall monitoring,which could be controlled deployment. Delivery delay and cross-cluster calculation leads to information inaccuracy by the existing dynamic collabo-rative self-organization algorithm in WSNs. In this letter,a Local Dynamic Cluster Self-organization algorithm (LDCS) is proposed for the large-scale regional and moving target monitoring in RM-WSNs. The algorithm utilizes the resource-rich node in WSNs as the cluster head,which processes target information obtained by sensor nodes in cluster. The cluster head shifts with the target moving in chance and re-groups a new cluster. The target information acquisition is limited in the dynamic cluster,which can reduce information across-clusters transfer delay and improve the real-time of information acquisition. The simulation results show that,LDCS can not only relieve the problem of "too frequent leader switches" in IDSQ,also make full use of the history monitoring information of target and con-tinuous monitoring of sensor nodes that failed in DCS.
基金Supported by the National Natural Science Foundation of China (No. 60903157)
文摘Most of the existing security Mobicast routing protocols are not suitable for the monitoring applications with higher quality of service (QoS) requirement. A QoS dynamic clustering secure multicast scheme (QoS-DCSMS) based on Mobicast and multi-level IxTESLA protocol for large-scale tracking sensornets is presented in this paper. The multicast clusters are dynamically formed according to the real-time status of nodes, and the cluster-head node is responsible for status review and certificating management of cluster nodes to ensure the most optimized QoS and security of multicast in this scheme. Another contribution of this paper is the optimal QoS security authentication algorithm, which analyzes the relationship between the QoS and the level Mofmulti-level oTESLA. Based on the analysis and simulation results, it shows that the influence to the network survival cycle ('NSC) and real-time communication caused by energy consumption and latency in authentication is acceptable when the optimal QoS security authentication algorithm is satisfied.
基金Supported by the National Natural Science Foundation of China.
文摘Absolute proper motions and radial velocities of 202 open clusters in the solar neighborhood, which can be used as tracers of the Galactic disk, are used to investigate the kinematics of the Galaxy in the solar vicinity, including the mean heliocentric velocity components (u1, u2, u3) of the open cluster system, the characteristic velocity dispersions (σ1,σ2,σ3), Oort constants (A, B) and the large-scale radial motion parameters (C, D) of the Galaxy. The results derived from the observational data of proper motions and radial velocities of a subgroup of 117 thin disk young open clusters by means of a maximum likelihood algorithm are: (u1,u2,u3) = (-16.1 ± 1.0,-7.9 ±1.4,-10.4±1.5) km·s^-1, (σ1,σ2,σ3) = (17.0±0.7, 12.2±0.9, 8.0±1.3) km·S^-1, (A, B) = (14.8±1.0, - 13.0±2.7) km·s^-1 kpc^-1, and (C, D) = (1.5 ± 0.7, -1.2 ±1.5) km·s^-1 kpc^-1. A discussion on the results and comparisons with what was obtained by other authors is given.
文摘We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with Violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered protoglobular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.
基金supported by the Science and Technology Project of Universities and Colleges in Shandong Province ‘‘Investigation on diagenetic environment and transformation pattern of red-bed reservoirs in the rift basins’’ (No. J16LH52)
文摘Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074141,11174169,and 10934010)the National Natural Science Foundation of China and Research Grant Council(NSFC/RGC)Joint Research Scheme(Grants No.11061160490)the National Basic Research Program of China(Grants Nos.2011CB921502,2012CB821305,2010CB922904,2009CB930701,and 2009CB929202)
文摘The effect of anisotropy caused by a confining potential on the properties of fermionic cold atoms in a triangular optical lattice is systematically investigated by using the dynamical cluster approximation combined with the continuous time quantum Monte-Carlo algorithm. The quantum phase diagrams which reflect the temperature-interaction relation and the competition between the anisotropic parameter and the interaction are presented with full consideration of the anisotropy of the system. Our results show that the system undergoes a transition from Fermi liquid to Mott insulator when the repulsive interaction reaches a critical value. The Kondo effect also can be observed in this system and the pseudogap is suppressed at low temperatures due to the Kondo effect. A feasible experiment protocol to observe these phenomena in an anisotropic triangular optical lattice with cold atoms is proposed, in which the hopping terms are closely related to the lattice confining potential and the atomic interaction can be adjusted via the Feshbach resonance.
基金Project(50474052) supported by the National Natural Foundation of China
文摘An algorithm was proposed to fast recognize three types of underwater micro-terrain, i.e. the level, the gradient and the uneven. With pendulum single beam bathymeter, the hard level concrete floor, the random uneven floor and the gradient wood panel (8-) were ultrasonically detected 20 times, respectively. The results show that the algorithm is right from fact that the first clustering values of the uneven are all less than the threshold value of 60.0% that is obtained by the level and gradient samples. The algorithm based on the dynamic clustering theory can effectively eliminate the influences of the exceptional elevation values produced by the disturbances resulted from the grazing angle, the characteristic of bottom material and environmental noises, and its real-time capability is good. Thus, the algorithm provides a foundation for the next restructuring of the micro-terrain.
基金the National Basic Research Program of China (973 program, No. 2012CB821805)The authors are also grateful for support from the Doctoral Fund of the Ministry of Education of China (No. 20113402120018)the Natural Science Foundation of Anhui Province of China (No. 1408085MA13)
文摘We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line and the [Ne III] finestructure line at 15.55 μm for these models at different inclinations of 0°, 30° and 60°. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock models with lower stellar velocity (≤ 5 km s^-1) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines point outward from molecular clouds. In bow shock models, the directions of these velocities depend on the speed of stars. The central velocities of these lines are consistent with the stellar motion in the high stellar speed cases, but they are opposite directions from the stellar motion in the low speed cases. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models from champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the H30α line.
基金supported by the National Natural Science Foundation of China (No. 51575469)
文摘A Projection Pursuit Dynamic Cluster(PPDC) model optimized by Memetic Algorithm(MA) was proposed to solve the practical problems of nonlinearity and high dimensions of sample data, which appear in the context of evaluation or prediction in complex systems. Projection pursuit theory was used to determine the optimal projection direction; then dynamic clusters and minimal total distance within clusters(min TDc) were used to build a PPDC model. 17 agronomic traits of 19 tomato varieties were evaluated by a PPDC model. The projection direction was optimized by Simulated Annealing(SA) algorithm, Particle Swarm Optimization(PSO), and MA. A PPDC model,based on an MA, avoids the problem of parameter calibration in Projection Pursuit Cluster(PPC) models. Its final results can be output directly, making the cluster results objective and definite. The calculation results show that a PPDC model based on an MA can solve the practical difficulties of nonlinearity and high dimensionality of sample data.