For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul...For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.展开更多
With the development of high-performance computing and the expansion of large-scale multiprocessor sys-tems,it is significant to study the reliability of systems.Probabilistic fault diagnosis is of practical value to ...With the development of high-performance computing and the expansion of large-scale multiprocessor sys-tems,it is significant to study the reliability of systems.Probabilistic fault diagnosis is of practical value to the reliabilityanalysis of multiprocessor systems.In this paper,we design a linear time diagnosis algorithm with the multiprocessor sys-tem whose threshold is set to 3,where the probability that any node is correctly diagnosed in the discrete state can be cal-culated.Furthermore,we give the probabilities that all nodes of a d-regular and d-connected graph can be correctly diag-nosed in the continuous state under the Weibull fault distribution and the Chi-square fault distribution.We prove thatthey approach to 1,which implies that our diagnosis algorithm can correctly diagnose almost all nodes of the graph.展开更多
基金The authors would like to thank for the support from Taif University Researchers Supporting Project number(TURSP-2020/239),Taif University,Taif,Saudi Arabia.
文摘For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network lifetime.For saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor Networks.Because of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to failure.For increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor nodes.An Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster Head.The data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the BS.Thus,the MCH overhead reduces.During the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.
基金supported by the National Natural Science Foundation of China under Grant Nos.62172291,62272333,and U1905211the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China under Grant No.KYCX21_2961+1 种基金Jiangsu Province Department of Education Future Network Research Fund Project under Grant No.FNSRFP-2021YB-39the Priority Academic Program Development of Jiangsu Higher Education Institutions,and the Collaborative Innovation Center of Novel Software Technology and Industrialization.
文摘With the development of high-performance computing and the expansion of large-scale multiprocessor sys-tems,it is significant to study the reliability of systems.Probabilistic fault diagnosis is of practical value to the reliabilityanalysis of multiprocessor systems.In this paper,we design a linear time diagnosis algorithm with the multiprocessor sys-tem whose threshold is set to 3,where the probability that any node is correctly diagnosed in the discrete state can be cal-culated.Furthermore,we give the probabilities that all nodes of a d-regular and d-connected graph can be correctly diag-nosed in the continuous state under the Weibull fault distribution and the Chi-square fault distribution.We prove thatthey approach to 1,which implies that our diagnosis algorithm can correctly diagnose almost all nodes of the graph.