A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
Index structure that enables efficient similarity queries in high-dimensional space is crucial for many applications. This paper discusses the indexing problem in dataset composed of partially clustered data, which ex...Index structure that enables efficient similarity queries in high-dimensional space is crucial for many applications. This paper discusses the indexing problem in dataset composed of partially clustered data, which exists in many applications. Current index methods are inefficient with partially clustered datasets. The dynamic and adaptive index structure presented here, called a multi-cluster tree (MC-tree), consists of a set of height-balanced trees for indexing. This index structure improves the querying efficiency in three ways: 1) Most bounding regions achieve uniform distributions, which results in fewer splits and less overlap compared with a single indexing tree. 2) The clusters in the dataset are dynamically detected when the index is updated. 3) The query process does not involve a sequential scan. The MC-tree was shown to be better than hierarchical and cluster-based indexes for the partially clustered datasets.展开更多
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
基金Supported by the Chinese National Key FundamentalResearch Program(No.G1998030414)the National Natural Science Foundation of China (No.79990580)the"985" Program of Tsinghua University
文摘Index structure that enables efficient similarity queries in high-dimensional space is crucial for many applications. This paper discusses the indexing problem in dataset composed of partially clustered data, which exists in many applications. Current index methods are inefficient with partially clustered datasets. The dynamic and adaptive index structure presented here, called a multi-cluster tree (MC-tree), consists of a set of height-balanced trees for indexing. This index structure improves the querying efficiency in three ways: 1) Most bounding regions achieve uniform distributions, which results in fewer splits and less overlap compared with a single indexing tree. 2) The clusters in the dataset are dynamically detected when the index is updated. 3) The query process does not involve a sequential scan. The MC-tree was shown to be better than hierarchical and cluster-based indexes for the partially clustered datasets.