A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit tw...A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.展开更多
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct ...This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.展开更多
A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particl...A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particle clusterstate under the control of the supervisor (Bob).The feature of this scheme is that the teleportation between the senderand the receiver depends on the control of the supervisor.展开更多
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w...Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.展开更多
This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quant...This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.展开更多
A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement res...A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.展开更多
We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages base...We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.展开更多
We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective...We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.展开更多
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is...We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is used, and the multi-ion cluster states can be generated by one step. Both the schemes are insensitive to thermal motion of the ions, all the facilities used in them are well within state of the art.展开更多
Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit syste...Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit systemsand controlled teleportation of an arbitrary two-qubit state.Therefore, the six-qubit cluster state as quantum channelsis equivalent to that of maximally six-qubit entangled state.展开更多
This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on t...This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.展开更多
We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibration...We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.展开更多
In this paper, we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms. It is shown that the scheme can also be used to create multi-...In this paper, we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms. It is shown that the scheme can also be used to create multi-atom cluster state. During the interaction between atom and cavity, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay. With the help of our scheme it is very simple to prepare the N-atom cluster state with perfect fidelity and probability. The practical feasibility of this method is also discussed.展开更多
We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single...We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single-photon resource to assist the concentration in each step,which makes this protocol more economical.With the help of the linear optical elements and weak cross-Kerr nonlinearity,one can obtain a maximally-entangled cluster state via local operations and classical communication.Moreover,the protocol can be iterated to obtain a higher success probability and is feasible under current experimental conditions.展开更多
Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit stat...Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.展开更多
In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitt...In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.展开更多
We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsod...We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.展开更多
This paper proposes schemes for generating multiple-photon and multiple-atom cluster states, respectively. The schemes are based on the cavity input-output process and atomic or photonic states measurement, and the su...This paper proposes schemes for generating multiple-photon and multiple-atom cluster states, respectively. The schemes are based on the cavity input-output process and atomic or photonic states measurement, and the successful probabilities approach unity in the ideal case. The numerical simulations show that the produced multiple-particle cluster states have high fidelity even if the Lamb-Dicke condition is not satisfied. Some practical imperfections, such as atomic spontaneous emission and output coupling inefficiency, only decrease the success probability but exert no influence on the fidelity of generated multiple-particle cluster states. From the experimental point of view, smaller operation number and lack of need for individual addressing keeps the schemes easy to implement. These schemes may offer a promising approach to the generation of a large-scale cluster state.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60572071 and 60873101)Natural Science Foundation of Jiangsu Province (Grant Nos BM2006504, BK2007104 and BK2008209)College Natural Science Foundation of Jiangsu Province (Grant No 06KJB520137)
文摘A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer.
基金supported by the Program for New Century Excellent Talents at the University of China (Grant No NCET-06-0554)the National Natural Science Foundation of China (Grant Nos 60677001 and 10747146)+3 种基金the Science-Technology Fund of AnhuiProvince for Outstanding Youth of China (Grant No 06042087)the Key Fund of the Ministry of Education of China (Grant No 206063)the Natural Science Foundation of Guangdong Province of China (Grant Nos 06300345 and 7007806)Natural Science Foundation of Hubei Province of China (Grant No 2006ABA354)
文摘This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.
基金National Natural Science Foundation of China under Grant No.10404010the Scientific Research Fund of the Educational Department of Jiangxi Province under Grant No.112[2006]the Talent Fund of Jiangxi Normal University under Grant Nos.1186 and 1187
文摘A controlled teleportation scheme is presented.In this scheme,quantum information of a single-qubit stateor an entangled two-qubits state is transmitted from a sender (Alice) to a receiver (Charlie) via a four-particle clusterstate under the control of the supervisor (Bob).The feature of this scheme is that the teleportation between the senderand the receiver depends on the control of the supervisor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834010,11804001,and 11904160)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA11)+1 种基金the Program of Youth Sanjin Scholar,National Key R&D Program of China(Grant No.2016YFA0301402)the Fund for Shanxi"1331 Project"Key Subjects Construction.
文摘Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
基金Project supported by the Postdoctal Foundation of Central South University of Chinathe Important Program of Hunan Provincial Education Department of China (Grant No. 06A038)+1 种基金Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation,China (Grant No. 07JJ3013)
文摘This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No. 10774108the Foundation for University Key Young Teacher of Henan Province under Grant No. 2009GGJS-163
文摘A scheme for controlled teleportation of an arbitrary two-particle state using a maximally entangled EPR pair and a cluster state as the quantum channel is proposed. After receiving Alice's Bell state measurement results, the controller performs a joint measurement on his particles under a non-maximally entangled Bell-basis. The receiver needs to introduce an auxiliary qubit, and performs a series of appropriate unitary transformations on his particles. The original state can be teleported successfully with the probability 2 cos2θ.
基金supported by the Postgraduate Innovation Research Plan from Anhui University under Grant No.20073039
文摘We present a novel protocol for deterministic secure quantum communication by using the lour-qubit cluster state as quantum channel. It is shown that two legitimate users can directly transmit the secret messages based on Bellbasis measurements and classical communication. The present protocol makes use of the ideas of block transmission and decoy particle checking technique. It has a high capacity as each cluster state can carry two 5its of information, and has a high intrinsic efficieney 5ecause almost all the instances except the decoy checking particles (its numSer is negligible) are useful. Furthermore, this protocol is feasible with present-day technique.
基金Project supported by the National Natural Science Foundation (Grant No 10574022), and the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006).
文摘We propose an experimentally feasible scheme for preparing a four-atom cluster state in a thermal cavity. In the scheme, the cavity field is only virtually excited and the photon-number-dependent part in the effective Hamiltonian is cancelled so that the system is insensitive to the cavity decay and the thermal field. At the same time, the scheme can be generalized to prepare n-atom cluster states with the success probability 100%. In addition, using the four-atom cluster state, we also propose a simpler scheme for implementing a remote-controlled not gate (CNOT) without the Bell states measurement.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金The project supported by the Scientific Research Fund of the Education Department of Hunan Province under Grant No.06C354the Natural Science Foundation of Hunan Province under Grant No.06JJ5015
文摘We present two schemes for preparing cluster states with atomic qubits in an ion-trap system. In the first scheme an auxiliary atomic level is needed. While in the second scheme an additional classical driven field is used, and the multi-ion cluster states can be generated by one step. Both the schemes are insensitive to thermal motion of the ions, all the facilities used in them are well within state of the art.
基金Supported by the National Natural Science Foundation of China under Grant No.10902083 Shaanxi Natural Science Foundation under Grant No.2009JM1007
文摘Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit systemsand controlled teleportation of an arbitrary two-qubit state.Therefore, the six-qubit cluster state as quantum channelsis equivalent to that of maximally six-qubit entangled state.
文摘This paper proposes two schemes to generate the multi-atom cluster states. The first scheme is based on the interaction of atoms with a highly detuned cavity mode and a classical field, the second scheme is based on the interaction of atoms with a cavity mode, strongly driven by a resonant classical field.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022), and the Funds of the Natural . Science of Fujian Province, China (Grant No Z0512006).
文摘We propose a scheme for the preparation of one-dimensional and two-dimensional cluster states by using hot trapped ions. The scheme is based on the interaction between two ions and bichromatic radiation. The vibrational mode in our protocol is only virtually excited so that the system is insensitive to the thermal field. In addition, we only use two levels of ions as qubits and the successful probability may achieve 100%.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025)Major Project supported by the Ministry of Education of Hunan Province, China (Grant No 06A038)
文摘In this paper, we propose a physical scheme to realize quantum SWAP gate by using a large-detuned single-mode cavity field and two identical Rydberg atoms. It is shown that the scheme can also be used to create multi-atom cluster state. During the interaction between atom and cavity, the cavity is only virtually excited and thus the scheme is insensitive to the cavity field states and cavity decay. With the help of our scheme it is very simple to prepare the N-atom cluster state with perfect fidelity and probability. The practical feasibility of this method is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042)the Talent Program of Yanbian University,China (Grant No. 950010001)+1 种基金the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2012M520612)the Program for Chun Miao Excellent Talents of Department of Education of Jilin Province,China (Grant No. 201316)
文摘We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single-photon resource to assist the concentration in each step,which makes this protocol more economical.With the help of the linear optical elements and weak cross-Kerr nonlinearity,one can obtain a maximally-entangled cluster state via local operations and classical communication.Moreover,the protocol can be iterated to obtain a higher success probability and is feasible under current experimental conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671087)
文摘Based on non-maximally entangled four-particle cluster states, we propose a new hierarchical information splitting protocol to probabilistically realize the quantum state sharing of an arbitrary unknown two-qubit state. In this scheme, the sender transmits the two-qubit secret state to three agents who are divided into two grades with two Bell-state measurements,and broadcasts the measurement results via a classical channel. One agent is in the upper grade and two agents are in the lower grade. The agent in the upper grade only needs to cooperate with one of the other two agents to recover the secret state but both of the agents in the lower grade need help from all of the agents. Every agent who wants to recover the secret state needs to introduce two ancillary qubits and performs a positive operator-valued measurement(POVM) instead of the usual projective measurement. Moreover, due to the symmetry of the cluster state, we extend this protocol to multiparty agents.
基金The work was supported by the National Natural Science Foundation of China under Crant No. 61100205.
文摘In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.
基金Supported by the National Natural Science Foundation of China under Grant No.10674018the National Fundamental Research Program of China under Grant No.2004CB719903
文摘We propose a scheme for generating a four-particle cluster state in an ion-trap system.The scheme isinsensitive to the thermal motion of the ions,and needs less operations than previous ones.With such a setup,we alsodemonstrate a procedure for perfectly teleporting an arbitrary two-particle state via a single multipartite entanglementchannel,a four-particle cluster state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022)the Natural Science Foundation of Fujian Province of China (Grant Nos 2007J0002 and 2006J0230)Funds of Education Committee of Fujian Province of China (Grant No JB05334)
文摘This paper proposes schemes for generating multiple-photon and multiple-atom cluster states, respectively. The schemes are based on the cavity input-output process and atomic or photonic states measurement, and the successful probabilities approach unity in the ideal case. The numerical simulations show that the produced multiple-particle cluster states have high fidelity even if the Lamb-Dicke condition is not satisfied. Some practical imperfections, such as atomic spontaneous emission and output coupling inefficiency, only decrease the success probability but exert no influence on the fidelity of generated multiple-particle cluster states. From the experimental point of view, smaller operation number and lack of need for individual addressing keeps the schemes easy to implement. These schemes may offer a promising approach to the generation of a large-scale cluster state.