In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of e...In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of entanglement witness for 3-qubit cluster states in the common environment. The result shows that environment can induce an interesting feature in the time evolution of the entanglement witness: i.e., the periodical collapse and revival of the entanglement dynamics.展开更多
Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time...Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time,which depends on the initial atomic states and the properties of squeezed states.We find that there are two decoherencefreestates in squeezed vacuum fields:one is the singlet state,and the other entangled state is the state that combinesboth excited states and ground states with a relative phase being equal to the phase of the squeezed state.展开更多
An entanglement measure,multiple entropy measures(MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system.In this work,we study the aver...An entanglement measure,multiple entropy measures(MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system.In this work,we study the average subsystem von Neumann entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS.Explicit results with specific particle numbers are calculated,and some analytical results are given for systems with arbitrary particle numbers.Compared with other example quantum states such as the GHZ states and W states,the linear cluster states are "more entangled" in terms of MEMS,namely their averaged entropies are larger than the GHZ states and W states.展开更多
Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in th...Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in this system. We find that the values of the detuning and the average photon number are larger, the amplitude of the entanglement is smaller, but its period does not increase accordingly. Moreover, with the increase of the field-mode structure parameter and the transition photon number, the amplitude of the entanglement varies slightly while the oscillation becomes more and more fast. Interestingly, a damping evolution of the entanglement appears when both the detuning and the atomic motion are considered simultaneously.展开更多
We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the ch...We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the charge detector to construct the quantum nondemolition measurement. According to the result of the measurement of the charge detection, we can ultimately obtain the maximally entangled cluster states. Moreover, the discarded items can be reused in the next round to reach a high success probability. This ECP may be useful in current solid quantum computation.展开更多
We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden d...We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden death and sudden birth phenomena, that with the increase of photon numbers in the two cavities, the alternate frequency of sudden death and sudden birth turns fast, and that the amplitude of concurrence oscillates regularly with oscillation frequency becoming slow when the cavity fields have the same photon numbers. While, the maximum of concurrence declines and the amplitude of concurrence oscillates irregularly when the two cavity fields have different photon numbers. In addition, we find the length of death time is dependent on the initial entanglement.展开更多
We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single...We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single-photon resource to assist the concentration in each step,which makes this protocol more economical.With the help of the linear optical elements and weak cross-Kerr nonlinearity,one can obtain a maximally-entangled cluster state via local operations and classical communication.Moreover,the protocol can be iterated to obtain a higher success probability and is feasible under current experimental conditions.展开更多
In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitt...In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.展开更多
For n≥3,we construct a class{Wn,π1,π2}of n^(2)×n^(2) hermitian matrices by the permutation pairs and show that,for a pair{π1,π2}of permutations on(1,2,…,n),Wn,π1,π2 is an entanglement witness of the n⊗n s...For n≥3,we construct a class{Wn,π1,π2}of n^(2)×n^(2) hermitian matrices by the permutation pairs and show that,for a pair{π1,π2}of permutations on(1,2,…,n),Wn,π1,π2 is an entanglement witness of the n⊗n system if{π1,π2}has the property(C).Recall that a pair{π1,π2}of permutations of(1,2,…,n)has the property(C)if,for each i,one can obtain a permutation of(1,…,i−1,i+1,…,n)from(π1(1),…,π1(i−1),π1(i+1),…,π1(n))and(π2(1),…,π2(i−1),π2(i+1),…,π2(n)).We further prove that Wn,π1,π2 is not comparable with Wn,π,which is the entanglement witness constructed from a single permutationπ;Wn,π1,π2 is decomposable ifπ1π2=id orπ21=π22=id.For the low dimensional cases n∈{3,4},we give a sufficient and necessary condition onπ1,π2 for Wn,π1,π2 to be an entanglement witness.We also show that,for n∈{3,4},Wn,π1,π2 is decomposable if and only ifπ1π2=id orπ21=π22=id;W3,π1,π2 is optimal if and only if(π1,π2)=(π,π2),whereπ=(2,3,1).As applications,some entanglement criteria for states and some decomposability criteria for positive maps are established.展开更多
Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates (BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying R...Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates (BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying Raman coupling, we obtain analytically the entanglement dynamics of the system with various initial states, particularly the SU(2) coherent state, for both of cases with and without the nonlinear interactions. It is shown that the effect of nonlinear interaction on the entanglement appears only in a longer time period depending on the BEC parameters.展开更多
We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field....We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field. After the realization of simple atomic measurements, the generation of CTESVS in four separate cavities is accomplished within the cavity decay time. In the case of large atom=cavity detuning, the scheme is immune to the effect of atomic spontaneous emission.展开更多
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct ...This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.展开更多
In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack a...In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.展开更多
We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown th...We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.展开更多
A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTE...A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No Y2006 A05).
文摘In the measurement-based model of quantum computing, a one-way quantum computer consisting of many qubits can be immersed in a common environment as a simple decoherence mechanism. This paper studies the dynamics of entanglement witness for 3-qubit cluster states in the common environment. The result shows that environment can induce an interesting feature in the time evolution of the entanglement witness: i.e., the periodical collapse and revival of the entanglement dynamics.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10974125, 60978017, and 60821004in part by the Educational Committee of Fujian Province (JA09041)Fujian Normal University (2008100220)
文摘Quantum entanglement dynamics of two Tavis-Cummings atoms interacting with the quantum light sourcesin a cavity is investigated.The results show the phenomenon that the concurrence disappears abruptly in a finite time,which depends on the initial atomic states and the properties of squeezed states.We find that there are two decoherencefreestates in squeezed vacuum fields:one is the singlet state,and the other entangled state is the state that combinesboth excited states and ground states with a relative phase being equal to the phase of the squeezed state.
基金supported by the National Natural Science Foundation of China (10874 098,11175094)the National Basic Research Program of China (2009CB929402,2011CB9216002)
文摘An entanglement measure,multiple entropy measures(MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system.In this work,we study the average subsystem von Neumann entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS.Explicit results with specific particle numbers are calculated,and some analytical results are given for systems with arbitrary particle numbers.Compared with other example quantum states such as the GHZ states and W states,the linear cluster states are "more entangled" in terms of MEMS,namely their averaged entropies are larger than the GHZ states and W states.
基金Project supported by the National Natural Science Foundation of China (Grant No.10704031)the Fundamental Research Funds for the Central Universities of China (Grant No.lzujbky-2010-75)
文摘Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in this system. We find that the values of the detuning and the average photon number are larger, the amplitude of the entanglement is smaller, but its period does not increase accordingly. Moreover, with the increase of the field-mode structure parameter and the transition photon number, the amplitude of the entanglement varies slightly while the oscillation becomes more and more fast. Interestingly, a damping evolution of the entanglement appears when both the detuning and the atomic motion are considered simultaneously.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11104159 and 11347110)the University Natural Science Research Project of Jiangsu Province of China (Grant No.13KJB140010)+2 种基金the Open Research Fund Program of National Laboratory of Solid State Microstructures,Nanjing University (Grant No.M25022)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education (Grant No.NYKL201303)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We propose an efficient entanglement concentration protocol (ECP) based on electron-spin cluster states assisted with single electrons. In the ECP, we adopt the electron polarization beam splitter (PBS) and the charge detector to construct the quantum nondemolition measurement. According to the result of the measurement of the charge detection, we can ultimately obtain the maximally entangled cluster states. Moreover, the discarded items can be reused in the next round to reach a high success probability. This ECP may be useful in current solid quantum computation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60667001)
文摘We investigate the entanglement dynamics via the concurrence of two distant atoms interacting off-resonantly with two cavity fields in Fock states, respectively. We find that the evolution of entanglement has sudden death and sudden birth phenomena, that with the increase of photon numbers in the two cavities, the alternate frequency of sudden death and sudden birth turns fast, and that the amplitude of concurrence oscillates regularly with oscillation frequency becoming slow when the cavity fields have the same photon numbers. While, the maximum of concurrence declines and the amplitude of concurrence oscillates irregularly when the two cavity fields have different photon numbers. In addition, we find the length of death time is dependent on the initial entanglement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042)the Talent Program of Yanbian University,China (Grant No. 950010001)+1 种基金the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2012M520612)the Program for Chun Miao Excellent Talents of Department of Education of Jilin Province,China (Grant No. 201316)
文摘We propose an entanglement concentration protocol to concentrate an arbitrary partially-entangled four-photon cluster state.As a pioneering three-step entanglement concentration scheme,our protocol only needs a single-photon resource to assist the concentration in each step,which makes this protocol more economical.With the help of the linear optical elements and weak cross-Kerr nonlinearity,one can obtain a maximally-entangled cluster state via local operations and classical communication.Moreover,the protocol can be iterated to obtain a higher success probability and is feasible under current experimental conditions.
基金The work was supported by the National Natural Science Foundation of China under Crant No. 61100205.
文摘In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.
基金partially supported by National Natural Science Foundation of China(11671294,12071336)。
文摘For n≥3,we construct a class{Wn,π1,π2}of n^(2)×n^(2) hermitian matrices by the permutation pairs and show that,for a pair{π1,π2}of permutations on(1,2,…,n),Wn,π1,π2 is an entanglement witness of the n⊗n system if{π1,π2}has the property(C).Recall that a pair{π1,π2}of permutations of(1,2,…,n)has the property(C)if,for each i,one can obtain a permutation of(1,…,i−1,i+1,…,n)from(π1(1),…,π1(i−1),π1(i+1),…,π1(n))and(π2(1),…,π2(i−1),π2(i+1),…,π2(n)).We further prove that Wn,π1,π2 is not comparable with Wn,π,which is the entanglement witness constructed from a single permutationπ;Wn,π1,π2 is decomposable ifπ1π2=id orπ21=π22=id.For the low dimensional cases n∈{3,4},we give a sufficient and necessary condition onπ1,π2 for Wn,π1,π2 to be an entanglement witness.We also show that,for n∈{3,4},Wn,π1,π2 is decomposable if and only ifπ1π2=id orπ21=π22=id;W3,π1,π2 is optimal if and only if(π1,π2)=(π,π2),whereπ=(2,3,1).As applications,some entanglement criteria for states and some decomposability criteria for positive maps are established.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475053).
文摘Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates (BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying Raman coupling, we obtain analytically the entanglement dynamics of the system with various initial states, particularly the SU(2) coherent state, for both of cases with and without the nonlinear interactions. It is shown that the effect of nonlinear interaction on the entanglement appears only in a longer time period depending on the BEC parameters.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We present a scheme to prepare cluster-type entangled squeezed vacuum states (CTESVS) by considering the two-photon interaction between a two-level atom and a high-quality cavity, driven by a strong classical field. After the realization of simple atomic measurements, the generation of CTESVS in four separate cavities is accomplished within the cavity decay time. In the case of large atom=cavity detuning, the scheme is immune to the effect of atomic spontaneous emission.
基金supported by Natural Science Research Project of High Education of Anhui Province (KJ2012Z080)Young Teachers Fund of Anhui University of Science and Technology(2012QNZ13)the Talent Foundation of High Education of Anhui Province for Outstanding Youth(2009QRZ056)
基金supported by the Program for New Century Excellent Talents at the University of China (Grant No NCET-06-0554)the National Natural Science Foundation of China (Grant Nos 60677001 and 10747146)+3 种基金the Science-Technology Fund of AnhuiProvince for Outstanding Youth of China (Grant No 06042087)the Key Fund of the Ministry of Education of China (Grant No 206063)the Natural Science Foundation of Guangdong Province of China (Grant Nos 06300345 and 7007806)Natural Science Foundation of Hubei Province of China (Grant No 2006ABA354)
文摘This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.
基金Project supported by NSFC(Grant Nos.61671087,61272514,61170272,61003287,61571335,61628209)the Fok Ying Tong Education Foundation(Grant No.131067)+2 种基金the National Key R&D Program of China under Grant 2017YFB0802300the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ016)Hubei Science Foundation(2016CFA030,2017AAA125)。
文摘In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774088)the Key Program of National Natural Science Foundation of China (Grant No 10534030)the Funds from Qufu Normal University, China (Grant No XJ0621)
文摘We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.
基金Project supported by the International Research & Development Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(MEST)of Korea(Grant No.2011-0030864)the National Natural Science Foundation of China(Grant Nos.11264042and 61068001)+2 种基金the China Postdoctoral Science Foundation(Grant No.2012M520612)the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education(Grant No.201316)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A scheme is proposed to generate an N-qubit cluster-type entangled squeezed vacuum state (CTESVS) based on the two-photon interaction between a two-level atomand the cavity fields with the cavity QED system. The CTESVS in N separate cavities can be effectively obtained after performing a simple one-qubit measurement on the atom. The influence of cavity decay on the CTESVS is also discussed.