期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
Low-Rank Multi-View Subspace Clustering Based on Sparse Regularization
1
作者 Yan Sun Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期14-30,共17页
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif... Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods. 展开更多
关键词 clusterING Multi-view Subspace clustering Low-Rank Prior Sparse Regularization
下载PDF
基于一致性图的权重自适应多视角谱聚类算法
2
作者 王丽娟 邢津萍 +3 位作者 尹明 郝志峰 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2024年第2期122-131,共10页
随着移动设备和互联网的普及,多视角数据的采集和分享变得更加容易,其可以从多个视角更准确地描述数据。目前,一些多视角聚类算法忽略了不同视角间的一致性潜在知识和不同视角的重要性。针对该问题,提出一种平衡视角间一致性信息的多视... 随着移动设备和互联网的普及,多视角数据的采集和分享变得更加容易,其可以从多个视角更准确地描述数据。目前,一些多视角聚类算法忽略了不同视角间的一致性潜在知识和不同视角的重要性。针对该问题,提出一种平衡视角间一致性信息的多视角聚类算法。首先通过调节视角权重学习视角间一致的共享相似度矩阵,提升共享矩阵的一致性,其中相关性强的视角具有的一致性信息更多,视角权重越大,在一致性学习中发挥的作用越大,而差异性大的视角其权重越小,在学习中发挥的作用越小。其次学习视角间的一致性样本嵌入以及不同视角的特征嵌入,并将特征嵌入中包含的多样性特征信息迁移到样本嵌入中,以此促进样本嵌入的一致性表达。在不同视角特征中包含多样性信息,可补充上述共享相似度矩阵学习中单一样本关系的不足。因此,采用二部图协同聚类,通过建立样本数据、样本嵌入和特征嵌入的关系图,学习样本的特征嵌入,并将其迁移到样本嵌入中。最后将图学习、谱聚类和特征嵌入学习整合到统一的框架中进行联合优化,得到最优的样本嵌入。实验结果表明,通过对样本嵌入进行K-means聚类,将该算法运行于5个真实数据集并与7种聚类算法对比,其中在3-Sources、Yale、MRSCV1数据集上的正确率均高于对比算法5%以上,验证了该算法的有效性。 展开更多
关键词 多视角聚类 一致性学习 权重自适应 协同聚类 谱聚类
下载PDF
基于二部图的联合谱嵌入多视图聚类算法
3
作者 赵兴旺 王淑君 +1 位作者 刘晓琳 梁吉业 《软件学报》 EI CSCD 北大核心 2024年第9期4408-4424,共17页
多视图聚类在图像处理、数据挖掘和机器学习等领域引起了越来越多的关注.现有的多视图聚类算法存在两个不足,一是在图构造过程中只考虑每个视图数据之间的成对关系生成亲和矩阵,而缺乏邻域关系的刻画;二是现有的方法将多视图信息融合和... 多视图聚类在图像处理、数据挖掘和机器学习等领域引起了越来越多的关注.现有的多视图聚类算法存在两个不足,一是在图构造过程中只考虑每个视图数据之间的成对关系生成亲和矩阵,而缺乏邻域关系的刻画;二是现有的方法将多视图信息融合和聚类的过程相分离,从而降低了算法的聚类性能.为此,提出一种更为准确和鲁棒的基于二部图的联合谱嵌入多视图聚类算法.首先,基于多视图子空间聚类的思想构造二部图进而产生相似图,接着利用相似图的谱嵌入矩阵进行图融合,其次,在融合过程中考虑每个视图的重要性进行权重约束,进而引入聚类指示矩阵得到最终的聚类结果.提出的模型将二部图、嵌入矩阵与聚类指示矩阵约束在一个框架下进行优化.此外,提供一种求解该模型的快速优化策略,该策略将优化问题分解成小规模子问题,并通过迭代步骤高效解决.提出算法和已有的多视图聚类算法在真实数据集上进行实验分析.实验结果表明,相比已有方法,提出算法在处理多视图聚类问题上是更加有效和鲁棒的. 展开更多
关键词 多视图聚类 子空间聚类 二部图 谱嵌入矩阵 聚类指示矩阵
下载PDF
基于ECM的多视图模糊聚类算法
4
作者 刘永利 常冉 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第3期154-160,共7页
目的传统聚类算法多属于单视图聚类的范畴,在数据结构形式日趋复杂的今天,单视图聚类越来越难以对数据集进行全面而准确的知识表达。特别地,虽然证据C-均值聚类算法的数据结构揭示能力比较突出,但是囿于单视图的算法设计,其对于数据集... 目的传统聚类算法多属于单视图聚类的范畴,在数据结构形式日趋复杂的今天,单视图聚类越来越难以对数据集进行全面而准确的知识表达。特别地,虽然证据C-均值聚类算法的数据结构揭示能力比较突出,但是囿于单视图的算法设计,其对于数据集的综合描述能力较为薄弱。方法为解决该问题,提出一种基于证据C-均值聚类的多视图模糊聚类算法。该算法在信念函数的理论框架下形成凭证分区,然后计算各特征在不同视图下的权重,并将该权重赋予不同视角下的各个分区,从而生成最终的聚类结果。一方面扩展了硬划分、模糊划分和可能性划分的概念,可同时继承证据C-均值聚类算法和多视图模糊聚类的优点,挖掘不同视图下的有价值信息,另一方面能够根据视图重要程度自动分配权重,据此提高聚类准确率。结果为验证算法的聚类效果,在4个多视图数据集上与其他5种算法进行了对比实验,实验内容包括聚类准确率、聚类效率和参数分析3部分。实验结果表明,所提算法在准确率、F度量和标准化互信息3个量化指标上表现较好,说明在聚类准确率方面优于对比算法;在聚类效率上,除去在个别数据集上因迭代次数过多导致聚类时间略长外,总体接近于对比算法中的最优表现。结论这些表现进一步证明了所提算法在处理多视图数据集时的有效性。 展开更多
关键词 聚类 多视图 特征 权重 准确率
下载PDF
自适应相似图联合优化的多视图聚类
5
作者 纪霞 施明远 +1 位作者 周芃 姚晟 《计算机学报》 EI CSCD 北大核心 2024年第2期310-322,共13页
相比于单一视图学习,多视图学习往往可以获得学习对象更全面的信息,因而在无监督学习领域,多视图聚类受到了研究者的极大关注,其中基于图的多视图聚类,近年来取得了很大的研究进展.基于图的多视图聚类一般是先从各个视图原始数据学习相... 相比于单一视图学习,多视图学习往往可以获得学习对象更全面的信息,因而在无监督学习领域,多视图聚类受到了研究者的极大关注,其中基于图的多视图聚类,近年来取得了很大的研究进展.基于图的多视图聚类一般是先从各个视图原始数据学习相似图,再进行视图间相似图的融合来获得最终聚类结果,因此,多视图聚类的效果是由相似图质量和相似图融合方法共同决定的.然而,现有基于图的多视图聚类方法几乎都聚焦在视图间相似图的融合方法研究上,而缺乏对相似图本身质量的关注.这些方法大多数都是孤立地从各视图的原始数据中学习相似图,并且在后续图融合过程中保持相似图不变.这样得到的相似图不可避免地包含噪声和冗余信息,进而影响后续的图融合和聚类.而少量考虑相似图质量的研究,要么相似图构造和图融合过程是直接联立迭代的,要么在预定义相似图过程中提前利用秩约束进一步初始化,要么就是利用相似图存在的一些底层结构来获取融合图的.这些方法对相似图本身改进很小,最终聚类性能提升也十分有限.同时现有基于图的多视图聚类流程也缺乏对各视图间一致性和不一致性的综合考虑,这也会严重影响最终的多视图聚类性能.为了避免低质量预定义相似图对聚类结果的不利影响以及综合考虑视图间一致性与不一致性来提升最终聚类效果,本文提出了一种自适应相似图联合优化的多视图聚类方法.首先通过Hadamard积来获得视图间高质量一致性部分信息,再将每个预定义相似图和这部分信息对标,重构各个视图的预设相似图.这个过程强化了各视图间的一致性部分,弱化了不一致性部分.其次设计了相似图重构改进和图融合联合迭代优化框架,实现了相似图的自适应改进,最终达到相似图和聚类结果共同提升的效果.该方法将相似图改进过程与图融合过程联合起来进行自适应迭代优化,并且在迭代优化中不断强化各视图间的一致性,弱化视图间的不一致性.此外,本文的方法也集成了现有多视图聚类方法的一些优点,自加权以及无需额外聚类步骤等.在九个基准数据集上与八个对比方法的实验验证了本文方法的有效性与优越性. 展开更多
关键词 多视图聚类 相似图 自适应优化 图融合 自加权
下载PDF
基于自注意力融合的不完整多视图聚类算法
6
作者 李顺勇 李师毅 +1 位作者 胥瑞 赵兴旺 《计算机应用》 CSCD 北大核心 2024年第9期2696-2703,共8页
基于不完整数据的多视图聚类任务已经成为无监督学习领域的研究热点之一。然而大多数基于“浅层”模型的多视图聚类算法通常在面对大规模高维数据时难以提取和刻画视图内的潜在特征结构;同时,堆叠或求平均的多视图信息融合方式忽视了视... 基于不完整数据的多视图聚类任务已经成为无监督学习领域的研究热点之一。然而大多数基于“浅层”模型的多视图聚类算法通常在面对大规模高维数据时难以提取和刻画视图内的潜在特征结构;同时,堆叠或求平均的多视图信息融合方式忽视了视图之间的差异性,没有充分考虑各视图对构建公共一致表示的不同贡献。针对以上问题,提出一种基于自注意力融合的不完整多视图聚类算法(IMVCSAF)。首先,基于深度自编码器提取各视图的潜在特征,并采用对比学习的方式最大化各视图间的一致性信息;其次,采用自注意力机制对各视图的潜在表示进行重新编码和融合,并全面考虑和挖掘不同视图之间的内在因果性和特征互补性;再次,基于公共一致表示对缺失实例样本的潜在表示进行预测和恢复,从而完整地实现多视图聚类的过程。在Scene-15、LandUse-21、Caltech101-20和NoisyMNIST数据集上的实验结果表明,IMVCSAF在满足收敛性要求的前提下得到的准确率均高于其他对比算法,而在50%缺失率的Noisy-MNIST数据集上,IMVCSAF的准确率比次优的COMPLETER(inCOMPlete muLti-view clustEring via conTrastivE pRediction)算法提高了6.58个百分点。 展开更多
关键词 多视图聚类 自注意力 互信息 表示学习 深度学习
下载PDF
基于多阶近邻约束的深度不完整多视图聚类方法
7
作者 王梅 王伟东 +1 位作者 刘勇 于源泽 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期53-64,共12页
多视图聚类是重要的无监督学习方法之一,然而在实际应用中很难获取完整的多视图数据,导致不完整多视图聚类问题.大多数已有的不完整多视图聚类方法只考虑了视图的属性信息,而忽视了数据结构信息对聚类的影响,使提取的特征不能充分表示... 多视图聚类是重要的无监督学习方法之一,然而在实际应用中很难获取完整的多视图数据,导致不完整多视图聚类问题.大多数已有的不完整多视图聚类方法只考虑了视图的属性信息,而忽视了数据结构信息对聚类的影响,使提取的特征不能充分表示原始数据的潜在结构.针对以上问题,提出一种基于多阶近邻约束的深度不完整多视图聚类方法.首先,利用具有自注意力机制的深度自编码器获取带有视图间信息交互的深层次隐含特征,并采用加权融合的方式获取视图的公共语义信息;然后,对于不完整多视图中的缺失数据,利用多视图的公共表示进行补全;最后,提出一种多阶近邻约束机制,该机制考虑不完整多视图数据的深层结构信息,利用多视图的互补性构建近似完整的近邻图,引导编码器学习更紧致、更有判别性的高级语义特征.在公共数据集上的实验结果证明了所提方法的有效性. 展开更多
关键词 不完整多视图聚类 自注意力 结构信息 多阶近邻
下载PDF
一种基于证据多视角的模糊C-means聚类算法
8
作者 马宗方 李雷华 田鸿朋 《控制工程》 CSCD 北大核心 2024年第8期1345-1354,共10页
针对传统多视角聚类算法难以准确识别噪声和有效划分类间重叠区域样本的问题,提出一种基于证据多视角的模糊C均值(evidential multi-view fuzzy C-means,EMVFCM)聚类算法。首先,在证据推理框架下,研究一种改进的模糊C-means多视角聚类算... 针对传统多视角聚类算法难以准确识别噪声和有效划分类间重叠区域样本的问题,提出一种基于证据多视角的模糊C均值(evidential multi-view fuzzy C-means,EMVFCM)聚类算法。首先,在证据推理框架下,研究一种改进的模糊C-means多视角聚类算法,通过优化改进的目标函数获得待测样本属于单类和噪声的信任值,从而识别出噪声数据。然后,由于重叠区域的样本不能被准确地划分类别,所以将其划分到相对应的复合类,这不仅能够表征数据样本类别的不精确性,还能降低错误分类的风险。最后,通过人工数据集和UCI数据集验证本文算法的性能并与相关算法对比。实验结果表明,本文算法较传统多视角聚类算法能更有效地处理数据中的噪声和重叠样本难以准确划分的问题。 展开更多
关键词 多视角聚类 重叠区域 证据推理 复合类
下载PDF
基于超图正则NMF的自适应半监督多视图聚类
9
作者 李向利 梅建平 莫元健 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第4期137-152,共16页
图正则非负矩阵分解(GNMF)虽然已成为大量多视图聚类方法的基本框架,但其尝试用简单图融合来自不同视图的复杂数据关系,同时获得一致性判别表示,这无疑有很大挑战性。为了更好地应对多视图数据的聚类任务,本文提出一种基于超图正则非负... 图正则非负矩阵分解(GNMF)虽然已成为大量多视图聚类方法的基本框架,但其尝试用简单图融合来自不同视图的复杂数据关系,同时获得一致性判别表示,这无疑有很大挑战性。为了更好地应对多视图数据的聚类任务,本文提出一种基于超图正则非负矩阵分解的半监督多视图聚类方法ASMCHNMF。该方法通过构造超图,学习来自多个视图的数据高阶关系,为合理利用现实世界中可获取的标签信息,引入标签约束项进行半监督学习。此外,该方法同时考虑一致性信息和互补性信息的学习,采用自适应措施区分不同视图的贡献,并使用交替迭代算法来对主函数进行优化。在7个真实数据集上的对比实验表明,在其中6个数据集上,ASMCHNMF算法的ACC和NMI指标均优于经典算法和当前先进算法。 展开更多
关键词 超图 非负矩阵分解 多视图聚类 半监督学习
下载PDF
基于改进松弛嵌入空间的多视图聚类
10
作者 张瑛 《计算机应用与软件》 北大核心 2024年第4期275-283,共9页
针对传统聚类方法缺乏统一特征表示,存在保守性的缺陷,提出一种基于改进松弛嵌入空间的多视图聚类方法。在统一的框架下联合学习一个综合的潜在嵌入表示矩阵、全局相似矩阵和一个精确指标矩阵。进一步放松全局相似矩阵的约束,并在此基... 针对传统聚类方法缺乏统一特征表示,存在保守性的缺陷,提出一种基于改进松弛嵌入空间的多视图聚类方法。在统一的框架下联合学习一个综合的潜在嵌入表示矩阵、全局相似矩阵和一个精确指标矩阵。进一步放松全局相似矩阵的约束,并在此基础上提出一种改进的松弛多视图聚类嵌入空间,使得该方法具有更低的计算复杂度和更多的数据点对之间的相关性。实验结果表明,该方法能够获得鲁棒性更强、准确度更高的聚类结果。 展开更多
关键词 多视图聚类 嵌入空间 相似矩阵 松弛因子
下载PDF
张量学习诱导的多视图谱聚类 被引量:1
11
作者 陈曼笙 蔡晓莎 +3 位作者 林家祺 王昌栋 黄栋 赖剑煌 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期52-68,共17页
现有的方法将通过张量奇异值分解(t-SVD)正则化的低秩表示应用到多视图子空间聚类中,取得了令人印象深刻的聚类性能.然而,它们都具有以下两个共同的缺点:(1)他们专注于探索样本之间的关系以构建表征,然后将其堆叠为张量,其计算复杂度至... 现有的方法将通过张量奇异值分解(t-SVD)正则化的低秩表示应用到多视图子空间聚类中,取得了令人印象深刻的聚类性能.然而,它们都具有以下两个共同的缺点:(1)他们专注于探索样本之间的关系以构建表征,然后将其堆叠为张量,其计算复杂度至少为O(n2logn);(2)他们总是直接在整合的表征上运行标准的谱聚类算法,而忽略了不同表征对最终聚类结果的先验知识.为了解决这些问题,本文提出了一种新颖的张量学习诱导的多视图谱聚类(TLIMSC)方法,其中同时探索了空间聚类结构和互补信息.具体来说,该方法将关联样本和簇关系的多视图谱嵌入表示堆叠成张量,计算复杂度最终变为O(n logn).然后,将学习到的带有不同自适应置信度的表征与最终的一致聚类结果联系起来.在五个数据集上的广泛实验证明了TLIMSC所具有的有效性和高效性. 展开更多
关键词 多视图聚类 加权张量核范数 谱嵌入表征 自适应置信度
下载PDF
6G业务场景的不完全多视图聚类分析 被引量:1
12
作者 张茹倩 承楠 +1 位作者 陈文 李长乐 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期76-87,共12页
在6G网络中,由于业务种类繁杂且需求各不相同,5G网络中划分的三大业务场景已无法满足其粒度上的要求,这给6G按需服务目标的实现带来了巨大挑战。针对海量杂乱的6G场景和6G场景分类中业务数据量庞大以及数据缺失问题,提出了一套基于业务... 在6G网络中,由于业务种类繁杂且需求各不相同,5G网络中划分的三大业务场景已无法满足其粒度上的要求,这给6G按需服务目标的实现带来了巨大挑战。针对海量杂乱的6G场景和6G场景分类中业务数据量庞大以及数据缺失问题,提出了一套基于业务关键性能指标的多维度场景聚类分析方案。该方案基于不完全多视图聚类技术,在上千种参数组合下使用肘部法和轮廓系数法进行调参聚类。聚类结果表明,提出的方案能在不完整的场景数据集中保证收敛,并达到较高的轮廓系数值。此外,通过对比不同比例的缺失数据聚类实验,所提出的6G场景聚类方案能够有效完成对于不同程度缺失数据的多维度聚类。最后,结合原始数据和聚类标签,分析并提炼聚类得到了11类场景的场景知识及各场景的关键性能指标特征,从而为未来6G网络中的新兴场景及业务提供方法基础和理论参考。 展开更多
关键词 6G 场景聚类 关键性能指标 不完全多视图聚类
下载PDF
不完整多视图聚类综述
13
作者 董瑶 付怡雪 +2 位作者 董永峰 史进 陈晨 《计算机应用》 CSCD 北大核心 2024年第6期1673-1682,共10页
多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的... 多视图聚类是近年来图数据挖掘领域的研究热点。由于数据采集技术的限制或人为因素等原因常导致视图或样本缺失问题。降低多视图的不完整性对聚类效果的影响是多视图聚类目前面临的重大挑战。因此,综合研究不完整多视图聚类(IMC)近年的发展具有重要的理论意义和实践价值。首先,归纳分析不完整多视图数据缺失类型;其次,详细比较基于多核学习(MKL)、矩阵分解(MF)学习、深度学习和图学习这4类IMC方法,分析代表性方法的技术特点和区别;再次,从数据集类型、视图和类别数量、应用领域等角度总结22个公开不完整多视图数据集;继次,总结评价指标,并系统分析现有不完整多视图聚类方法在同构和异构数据集上的性能表现;最后,归纳分析不完整多视图聚类目前存在的问题、未来的发展方向和现有应用领域。 展开更多
关键词 不完整性 多视图聚类 图数据挖掘 缺失视图 多视图学习
下载PDF
数据表示的相关性度量方法
14
作者 刘吉元 刘新旺 +2 位作者 蔡志平 祝恩 鞠儒生 《计算机学报》 EI CAS CSCD 北大核心 2024年第7期1568-1581,共14页
数据表示之间的相关性度量是机器学习和人工智能技术的基石.然而现有的度量方法要么数据表示的全局信息考虑不足,要么复杂度较高,限制了相关技术的进一步发展.为解决上述问题,本文提出一种数据表示的对齐度量方法,称为表示对齐(Represen... 数据表示之间的相关性度量是机器学习和人工智能技术的基石.然而现有的度量方法要么数据表示的全局信息考虑不足,要么复杂度较高,限制了相关技术的进一步发展.为解决上述问题,本文提出一种数据表示的对齐度量方法,称为表示对齐(Representation Alignment,RA).此度量方法能够全局性地衡量任意两个数据表示之间的相关性,且其在样本数量和特征维度上的计算复杂度均为线性.在此基础上,我们将RA扩展到了对比学习领域,进一步提出了基于对比的表示对齐(Contrastive Representation Alignment,CRA)度量方法.上述两个度量方法可自然地用于多视图学习场景,即可通过最大化不同视图数据之间的RA和CRA来融合各个视图之间的信息.为验证这一点,我们还提出了两个新颖多视图聚类算法,并在七个基准数据集上取得了领先的聚类性能. 展开更多
关键词 表示对齐 对比学习 多视图聚类
下载PDF
基于图的自适应加权多视图聚类
15
作者 蓝健 王俊义 林基明 《计算机应用与软件》 北大核心 2024年第7期222-227,238,共7页
针对现有的基于图的多视图聚类算法没有考虑不同视图的权重和视图数据存在噪声的问题,提出一种基于图的自适应加权多视图聚类算法。通过自适应邻域学习从原始数据中构造多个关系图,引入视图权重调节参数,减少噪声的影响;通过自适应学习... 针对现有的基于图的多视图聚类算法没有考虑不同视图的权重和视图数据存在噪声的问题,提出一种基于图的自适应加权多视图聚类算法。通过自适应邻域学习从原始数据中构造多个关系图,引入视图权重调节参数,减少噪声的影响;通过自适应学习将各个关系图融合成统一关系图,通过秩约束优化使数据点自动划分成所需的簇,从而得到聚类结果。在多视图数据集上的实验结果表明了该算法的有效性。 展开更多
关键词 多视图聚类 数据融合 自适应加权 拉普拉斯矩阵
下载PDF
多样性约束和高阶信息挖掘的多视图聚类
16
作者 赵振廷 赵旭俊 《计算机应用研究》 CSCD 北大核心 2024年第8期2309-2314,共6页
在现有的多视图聚类研究中,大多数方法没有考虑多视图的多样性,也没有关注数据的高阶邻域信息,导致聚类结果不够准确,难以挖掘数据集的底层信息。为了解决这些问题,提出了基于多样性约束和高阶信息挖掘的多视图聚类算法(MVCDCHO)。首先... 在现有的多视图聚类研究中,大多数方法没有考虑多视图的多样性,也没有关注数据的高阶邻域信息,导致聚类结果不够准确,难以挖掘数据集的底层信息。为了解决这些问题,提出了基于多样性约束和高阶信息挖掘的多视图聚类算法(MVCDCHO)。首先设计了视图间多样性测量的方法,利用多样性的约束保留数据的交集特征,同时去除多视图的差异特征;然后提出了一种挖掘视图高阶信息的方法,要求多视图的交集特征接近混合相似图,以挖掘数据间相关性所没有关注到的高阶信息;最后将多视图的交集特征融合成共识图,通过谱聚类来获取聚类目标图;另外,设计了一种交替迭代的方法来迭代学习优化目标函数。实验结果表明,MVCDCHO在归一化互信息(NMI)、调整后的兰德指数(ARI)、聚类精度(ACC)多个聚类评价指标上表现出优异的性能。理论分析和实验研究验证了MVCDCHO中多视图多样性和高阶信息的关键作用,证明了MVCDCHO的优越性。 展开更多
关键词 多视图聚类 多样性 一致性 高阶信息
下载PDF
基于加权锚点的多视图聚类算法
17
作者 刘溯源 王思为 +3 位作者 唐厂 周思航 王思齐 刘新旺 《自动化学报》 EI CAS CSCD 北大核心 2024年第6期1160-1170,共11页
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高,以致无法扩展到大规模数据的问题.其中,基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵,利用重构矩阵进行聚类,有效地降低... 大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高,以致无法扩展到大规模数据的问题.其中,基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵,利用重构矩阵进行聚类,有效地降低了算法的时间和空间复杂度.然而,现有的方法忽视了锚点之间的差异,均等地看待所有锚点,导致聚类结果受到低质量锚点的限制.为定位更具有判别性的锚点,加强高质量锚点对聚类的影响,提出一种基于加权锚点的大规模多视图聚类算法(Multi-view clustering with weighted anchors,MVC-WA).通过引入自适应锚点加权机制,所提方法在统一框架下确定锚点的权重,进行锚图的构建.同时,为增加锚点的多样性,根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性. 展开更多
关键词 多视图聚类 大规模聚类 锚点 权重学习
下载PDF
多样性引导的深度多视图聚类算法
18
作者 胡虹 李学俊 廖竞 《计算机系统应用》 2024年第7期161-169,共9页
多视图聚类旨在从不同视图的多样性信息中,学习到更加全面和准确的共识表示,以提高模型的聚类性能.目前大部分多视图聚类算法采用希尔伯特-施密特独立性准则(HSIC)或自适应加权方法从全局考虑各视图的多样性,忽略了各视图样本之间的局... 多视图聚类旨在从不同视图的多样性信息中,学习到更加全面和准确的共识表示,以提高模型的聚类性能.目前大部分多视图聚类算法采用希尔伯特-施密特独立性准则(HSIC)或自适应加权方法从全局考虑各视图的多样性,忽略了各视图样本之间的局部多样性信息学习.针对上述问题,提出了多样性引导的深度多视图聚类算法.首先,提出了融合多头自注意力机制的软聚类模块,多头自注意力机制用来学习全局多样性,软聚类模糊C均值算法用来学习局部多样性;其次,在深度图自编码器网络结构中引入软聚类模块,以达到多样性信息引导潜在表示生成的目的;然后,将得到的各视图潜在表示进行加权融合得到共识表示,并采用谱聚类算法对共识表示进行聚类;最后,在3个常用数据集上进行了对比实验和消融实验.实验结果表明,提出的聚类算法具有良好的聚类效果,以及提出的多样性信息学习模块可以有效提高算法聚类性能. 展开更多
关键词 多视图聚类 深度聚类 软聚类 多头自注意力机制 多样性
下载PDF
基于多样性与一致性的单步多视图聚类
19
作者 胡傲然 陈晓红 《计算机工程》 CAS CSCD 北大核心 2024年第5期51-61,共11页
随着数据采集技术的发展,多视图数据变得越来越常见。与单视图数据相比,多视图数据包含更丰富的信息,通常用一致性与多样性来刻画。现有基于图的多视图聚类方法大多只关注视图间的一致性信息,忽视了视图间的多样性信息,并且图的构建与... 随着数据采集技术的发展,多视图数据变得越来越常见。与单视图数据相比,多视图数据包含更丰富的信息,通常用一致性与多样性来刻画。现有基于图的多视图聚类方法大多只关注视图间的一致性信息,忽视了视图间的多样性信息,并且图的构建与聚类过程分离,从而影响聚类算法的效果。提出基于多样性与一致性的单步多视图聚类算法(OMCDC)。基于“距离较近的数据点成为邻居的可能性较大”这一先验知识构建各个视图的相似性图。不同于以往算法直接融合相似性图获得公共图,OMCDC将每个视图的相似性图分解为一致性图和多样性图,通过融合一致性图获得更具一致性的公共图。在此基础上,引入谱旋转,联合优化低维谱嵌入和聚类概率矩阵,将图学习和聚类融为一体,直接获得聚类结果。OMCDC充分利用了多视图数据的一致性信息与多样性信息,结合谱旋转实现了单步多视图聚类。实验结果表明,该算法在100L和HW2数据集上的聚类准确率分别为94.62%和99.30%,相比MVGL、AWP、MCGC等方法具有较优的聚类性能。 展开更多
关键词 多视图学习 多视图聚类 谱聚类 谱旋转 一致性 多样性
下载PDF
基于一致引导的不完全多视图聚类
20
作者 安萍 彭军龙 《计算机应用与软件》 北大核心 2024年第5期254-263,共10页
为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,... 为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,联合正则化表示学习策略则为一致表示学习提供了更大的自由度。提出交替迭代优化算法对聚类进行优化。在七个数据集上的实验结果表明,提出的方法能够有效提升不完全多视图聚类的效果。 展开更多
关键词 多视图聚类 一致引导 图学习 正则化 自适应
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部