In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gain...Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gained much attention and are a very attractive energy resource nowadays.The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun.PV systems play an important role in reducing feeder losses,improving voltage profiles and providing ancillary services to local loads.However,large PV grid-connected systems may have a destructive impact on the stability of the elec-tric grid.This is due to thefluctuations of the output AC power generated from the PV systems according to the variations in the solar energy levels.Thus,the elec-trical distribution system with high penetration of PV systems is subject to perfor-mance degradation and instabilities.For that,this project attempts to enhance the integration process of PV systems into electrical grids by analyzing the impact of installing grid-connected PV plants.To accomplish this,an indicative representa-tion of solar irradiation datasets is used for planning and powerflow studies of the electric network prior to PV systems installation.Those datasets contain lengthy historical observations of solar energy data,that requires extensive analysis and simulations.To overcome that the lengthy historical datasets are reduced and clus-tered while preserving the original data characteristics.The resultant clusters can be utilized in the planning stage and simulation studies.Accordingly,studies related to PV systems integration into the electric grid are conducted in an efficient manner,avoiding computing resources and processing times with easier and practical implementation.展开更多
To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient...To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient and dynamic phasors. Based on a demonstration of the concepts and properties of dynamic phasors, the models of single-phase and three-phase inverters described by dynamic phasors are established first. Considering the numerical compatibility problem between dynamic phasors and instantaneous values, an interface scheme between dynamic phasors and instantaneous values is designed, and the efficiency and precision differences of various transformation methods are compared in detail.Finally, by utilizing MATLAB/Simulink, a hybrid simulation platform of a multi-inverter grid-connected system is built, and the efficiency and accuracy of the hybrid simulation are validated via comparison with the full electromagnetic transient simulation.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Streptomyces has enormous potential to produce novel natural products(NPs)as it harbors a huge reservoir of uncharacterized and silent natural product biosynthetic gene clusters(BGCs).However,the lack of efficient gen...Streptomyces has enormous potential to produce novel natural products(NPs)as it harbors a huge reservoir of uncharacterized and silent natural product biosynthetic gene clusters(BGCs).However,the lack of efficient gene cluster engineering strategies has hampered the pace of new drug discovery.Here,we developed an easy-to-use,highly flexible DNA assembly toolkit for gene cluster engineering.The DNA assembly toolkit is compatible with various DNA assembling approaches including Biobrick,Golden Gate,CATCH,yeast homologous recombination-based DNA assembly and homing endonuclease-mediated assembly.This compatibility offers great flexibility in handling multiple genetic parts or refactoring large gene clusters.To demonstrate the utility of this toolkit,we quantified a library of modular regulatory parts,and engineered a gene cluster(act)using characterized promoters that led to increased production.Overall,this work provides a powerful part assembly toolkit that can be used for natural product discovery and optimization in Streptomyces.展开更多
The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Inst...The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu...The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.展开更多
American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired perso...American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.展开更多
In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization...In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.展开更多
In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(...In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(UCS).The UCS necessitates heterogeneity,management level,and data transmission for distributed users.Simultaneously,security remains a major issue in the IoT-driven UCS.Besides,energy-limited IoT devices need an effective clustering strategy for optimal energy utilization.The recent developments of explainable artificial intelligence(XAI)concepts can be employed to effectively design intrusion detection systems(IDS)for accomplishing security in UCS.In this view,this study designs a novel Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for IoT Driven Ubiquitous Computing System(BXAI-IDCUCS)model.The major intention of the BXAI-IDCUCS model is to accomplish energy efficacy and security in the IoT environment.The BXAI-IDCUCS model initially clusters the IoT nodes using an energy-aware duck swarm optimization(EADSO)algorithm to accomplish this.Besides,deep neural network(DNN)is employed for detecting and classifying intrusions in the IoT network.Lastly,blockchain technology is exploited for secure inter-cluster data transmission processes.To ensure the productive performance of the BXAI-IDCUCS model,a comprehensive experimentation study is applied,and the outcomes are assessed under different aspects.The comparison study emphasized the superiority of the BXAI-IDCUCS model over the current state-of-the-art approaches with a packet delivery ratio of 99.29%,a packet loss rate of 0.71%,a throughput of 92.95 Mbps,energy consumption of 0.0891 mJ,a lifetime of 3529 rounds,and accuracy of 99.38%.展开更多
The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role...The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role in network administration in the future generation of VANET withfifth generation(5G)networks.Regardless of the benefits of VANET,energy economy and traffic control are significant architectural challenges.Accurate and real-time trafficflow prediction(TFP)becomes critical for managing traffic effectively in the VANET.SDN controllers are a critical issue in VANET,which has garnered much interest in recent years.With this objective,this study develops the SDNTFP-C technique,a revolutionary SDN controller-based real-time trafficflow forecasting technique for clustered VANETs.The proposed SDNTFP-C technique combines the SDN controller’s scalability,flexibility,and adaptability with deep learning(DL)mod-els.Additionally,a novel arithmetic optimization-based clustering technique(AOCA)is developed to cluster automobiles in a VANET.The TFP procedure is then performed using a hybrid convolutional neural network model with atten-tion-based bidirectional long short-term memory(HCNN-ABLSTM).To optimise the performance of the HCNN-ABLSTM model,the dingo optimization techni-que was used to tune the hyperparameters(DOA).The experimental results ana-lysis reveals that the suggested method outperforms other current techniques on a variety of evaluation metrics.展开更多
Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can pro...Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.展开更多
The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in t...We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in the NW direction.The X-ray brightness residual map and corresponding temperature profiles reveal a possible shock front in the NW direction and a cold front feature in the SE direction.Combined with the galaxy luminosity density map we propose a weak merger scenario.A young sub-cluster passing from the SE to NW direction could explain the optical subpeak,the intracluster medium temperature map,the X-ray surface brightness excess,and the X-ray peak offset together.展开更多
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C...The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.展开更多
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
文摘Photovoltaic(PV)systems are electric power systems designed to sup-ply usable solar power by means of photovoltaics,which is the conversion of light into electricity using semiconducting materials.PV systems have gained much attention and are a very attractive energy resource nowadays.The substantial advantage of PV systems is the usage of the most abundant and free energy from the sun.PV systems play an important role in reducing feeder losses,improving voltage profiles and providing ancillary services to local loads.However,large PV grid-connected systems may have a destructive impact on the stability of the elec-tric grid.This is due to thefluctuations of the output AC power generated from the PV systems according to the variations in the solar energy levels.Thus,the elec-trical distribution system with high penetration of PV systems is subject to perfor-mance degradation and instabilities.For that,this project attempts to enhance the integration process of PV systems into electrical grids by analyzing the impact of installing grid-connected PV plants.To accomplish this,an indicative representa-tion of solar irradiation datasets is used for planning and powerflow studies of the electric network prior to PV systems installation.Those datasets contain lengthy historical observations of solar energy data,that requires extensive analysis and simulations.To overcome that the lengthy historical datasets are reduced and clus-tered while preserving the original data characteristics.The resultant clusters can be utilized in the planning stage and simulation studies.Accordingly,studies related to PV systems integration into the electric grid are conducted in an efficient manner,avoiding computing resources and processing times with easier and practical implementation.
基金supported by the State Grid Science and Technology Project (grant no. KJ2021-069)。
文摘To realize the efficient transient simulation of a grid-connected power generation system based on multiple inverters, this paper proposes a hybrid simulation method integrating the models of electromagnetic transient and dynamic phasors. Based on a demonstration of the concepts and properties of dynamic phasors, the models of single-phase and three-phase inverters described by dynamic phasors are established first. Considering the numerical compatibility problem between dynamic phasors and instantaneous values, an interface scheme between dynamic phasors and instantaneous values is designed, and the efficiency and precision differences of various transformation methods are compared in detail.Finally, by utilizing MATLAB/Simulink, a hybrid simulation platform of a multi-inverter grid-connected system is built, and the efficiency and accuracy of the hybrid simulation are validated via comparison with the full electromagnetic transient simulation.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金supported by the National Key Research and Development Program of China[2020YFA0906900,2018YFA0900700]Natural Science Foundation of China[31500069]+1 种基金the Chinese Academy of Sciences[No.QYZDB-SSW-SMC050,No.XDB0480000 of the Strategic Priority Research Program]CAS Youth Interdisciplinary Team and the Shenzhen Science and Technology Innovation Committee[No.JCYJ20180507182241844,JCHZ20200005,DWKF20190009].
文摘Streptomyces has enormous potential to produce novel natural products(NPs)as it harbors a huge reservoir of uncharacterized and silent natural product biosynthetic gene clusters(BGCs).However,the lack of efficient gene cluster engineering strategies has hampered the pace of new drug discovery.Here,we developed an easy-to-use,highly flexible DNA assembly toolkit for gene cluster engineering.The DNA assembly toolkit is compatible with various DNA assembling approaches including Biobrick,Golden Gate,CATCH,yeast homologous recombination-based DNA assembly and homing endonuclease-mediated assembly.This compatibility offers great flexibility in handling multiple genetic parts or refactoring large gene clusters.To demonstrate the utility of this toolkit,we quantified a library of modular regulatory parts,and engineered a gene cluster(act)using characterized promoters that led to increased production.Overall,this work provides a powerful part assembly toolkit that can be used for natural product discovery and optimization in Streptomyces.
基金sponsored by the National Natural Science Foundation of P.R.China(Nos.62102194 and 62102196)Six Talent Peaks Project of Jiangsu Province(No.RJFW-111)Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX23_1087 and KYCX22_1027).
文摘The study delves into the expanding role of network platforms in our daily lives, encompassing various mediums like blogs, forums, online chats, and prominent social media platforms such as Facebook, Twitter, and Instagram. While these platforms offer avenues for self-expression and community support, they concurrently harbor negative impacts, fostering antisocial behaviors like phishing, impersonation, hate speech, cyberbullying, cyberstalking, cyberterrorism, fake news propagation, spamming, and fraud. Notably, individuals also leverage these platforms to connect with authorities and seek aid during disasters. The overarching objective of this research is to address the dual nature of network platforms by proposing innovative methodologies aimed at enhancing their positive aspects and mitigating their negative repercussions. To achieve this, the study introduces a weight learning method grounded in multi-linear attribute ranking. This approach serves to evaluate the significance of attribute combinations across all feature spaces. Additionally, a novel clustering method based on tensors is proposed to elevate the quality of clustering while effectively distinguishing selected features. The methodology incorporates a weighted average similarity matrix and optionally integrates weighted Euclidean distance, contributing to a more nuanced understanding of attribute importance. The analysis of the proposed methods yields significant findings. The weight learning method proves instrumental in discerning the importance of attribute combinations, shedding light on key aspects within feature spaces. Simultaneously, the clustering method based on tensors exhibits improved efficacy in enhancing clustering quality and feature distinction. This not only advances our understanding of attribute importance but also paves the way for more nuanced data analysis methodologies. In conclusion, this research underscores the pivotal role of network platforms in contemporary society, emphasizing their potential for both positive contributions and adverse consequences. The proposed methodologies offer novel approaches to address these dualities, providing a foundation for future research and practical applications. Ultimately, this study contributes to the ongoing discourse on optimizing the utility of network platforms while minimizing their negative impacts.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported by the National Natural Science Foundation of China(22205209,52202373 and U21A200972)China Postdoctoral Science Foundation(2022M722867)Key Research Project of Higher Education Institutions in Henan Province(23A530001)。
文摘The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.
基金This research was supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(NRF-2019R1A2C1084308).
文摘American Sign Language(ASL)images can be used as a communication tool by determining numbers and letters using the shape of the fingers.Particularly,ASL can have an key role in communication for hearing-impaired persons and conveying information to other persons,because sign language is their only channel of expression.Representative ASL recognition methods primarily adopt images,sensors,and pose-based recognition techniques,and employ various gestures together with hand-shapes.This study briefly reviews these attempts at ASL recognition and provides an improved ASL classification model that attempts to develop a deep learning method with meta-layers.In the proposed model,the collected ASL images were clustered based on similarities in shape,and clustered group classification was first performed,followed by reclassification within the group.The experiments were conducted with various groups using different learning layers to improve the accuracy of individual image recognition.After selecting the optimized group,we proposed a meta-layered learning model with the highest recognition rate using a deep learning method of image processing.The proposed model exhibited an improved performance compared with the general classification model.
基金supported by Ulsan Metropolitan City-ETRI joint cooperation project[21AS1600,Development of intelligent technology for key industriesautonomous human-mobile-space autonomous collaboration intelligence technology].
文摘In recent times,real time wireless networks have found their applicability in several practical applications such as smart city,healthcare,surveillance,environmental monitoring,etc.At the same time,proper localization of nodes in real time wireless networks helps to improve the overall functioning of networks.This study presents an Improved Metaheuristics based Energy Efficient Clustering with Node Localization(IM-EECNL)approach for real-time wireless networks.The proposed IM-EECNL technique involves two major processes namely node localization and clustering.Firstly,Chaotic Water Strider Algorithm based Node Localization(CWSANL)technique to determine the unknown position of the nodes.Secondly,an Oppositional Archimedes Optimization Algorithm based Clustering(OAOAC)technique is applied to accomplish energy efficiency in the network.Besides,the OAOAC technique derives afitness function comprising residual energy,distance to cluster heads(CHs),distance to base station(BS),and load.The performance validation of the IM-EECNL technique is carried out under several aspects such as localization and energy efficiency.A wide ranging comparative outcomes analysis highlighted the improved performance of the IM-EECNL approach on the recent approaches with the maximum packet delivery ratio(PDR)of 0.985.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:624-611-1443)。
文摘In the Internet of Things(IoT)based system,the multi-level client’s requirements can be fulfilled by incorporating communication technologies with distributed homogeneous networks called ubiquitous computing systems(UCS).The UCS necessitates heterogeneity,management level,and data transmission for distributed users.Simultaneously,security remains a major issue in the IoT-driven UCS.Besides,energy-limited IoT devices need an effective clustering strategy for optimal energy utilization.The recent developments of explainable artificial intelligence(XAI)concepts can be employed to effectively design intrusion detection systems(IDS)for accomplishing security in UCS.In this view,this study designs a novel Blockchain with Explainable Artificial Intelligence Driven Intrusion Detection for IoT Driven Ubiquitous Computing System(BXAI-IDCUCS)model.The major intention of the BXAI-IDCUCS model is to accomplish energy efficacy and security in the IoT environment.The BXAI-IDCUCS model initially clusters the IoT nodes using an energy-aware duck swarm optimization(EADSO)algorithm to accomplish this.Besides,deep neural network(DNN)is employed for detecting and classifying intrusions in the IoT network.Lastly,blockchain technology is exploited for secure inter-cluster data transmission processes.To ensure the productive performance of the BXAI-IDCUCS model,a comprehensive experimentation study is applied,and the outcomes are assessed under different aspects.The comparison study emphasized the superiority of the BXAI-IDCUCS model over the current state-of-the-art approaches with a packet delivery ratio of 99.29%,a packet loss rate of 0.71%,a throughput of 92.95 Mbps,energy consumption of 0.0891 mJ,a lifetime of 3529 rounds,and accuracy of 99.38%.
文摘The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role in network administration in the future generation of VANET withfifth generation(5G)networks.Regardless of the benefits of VANET,energy economy and traffic control are significant architectural challenges.Accurate and real-time trafficflow prediction(TFP)becomes critical for managing traffic effectively in the VANET.SDN controllers are a critical issue in VANET,which has garnered much interest in recent years.With this objective,this study develops the SDNTFP-C technique,a revolutionary SDN controller-based real-time trafficflow forecasting technique for clustered VANETs.The proposed SDNTFP-C technique combines the SDN controller’s scalability,flexibility,and adaptability with deep learning(DL)mod-els.Additionally,a novel arithmetic optimization-based clustering technique(AOCA)is developed to cluster automobiles in a VANET.The TFP procedure is then performed using a hybrid convolutional neural network model with atten-tion-based bidirectional long short-term memory(HCNN-ABLSTM).To optimise the performance of the HCNN-ABLSTM model,the dingo optimization techni-que was used to tune the hyperparameters(DOA).The experimental results ana-lysis reveals that the suggested method outperforms other current techniques on a variety of evaluation metrics.
文摘Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金supported by the National Natural Science Foundation of China(grant Nos.U2038104 and 11703014)the Bureau of International Cooperation,Chinese Academy of Sciences(GJHZ1864)。
文摘We study the structural and dynamical properties of A209 based on Chandra and XMM-Newton observations.We obtain detailed temperature,pressure,and entropy maps with the contour binning method,and find a hot region in the NW direction.The X-ray brightness residual map and corresponding temperature profiles reveal a possible shock front in the NW direction and a cold front feature in the SE direction.Combined with the galaxy luminosity density map we propose a weak merger scenario.A young sub-cluster passing from the SE to NW direction could explain the optical subpeak,the intracluster medium temperature map,the X-ray surface brightness excess,and the X-ray peak offset together.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022MB106national training program of innovation and entrepreneurship for undergraduates,Grant/Award Number:202210424099National Natural Science Foundation of China,Grant/Award Numbers:21601067,21701057,21905147。
文摘The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.