In this paper,we discuss the influences of channel blocks on the spiking regularity in a clustered neuronal network by applying stochastic Hodgkin-Huxley neuronal models as the building blocks.With the aid of simulati...In this paper,we discuss the influences of channel blocks on the spiking regularity in a clustered neuronal network by applying stochastic Hodgkin-Huxley neuronal models as the building blocks.With the aid of simulation results,we reveal that the spiking regularity of the clustered neuronal network could be resonantly enhanced via fine-tuning of the non-blocked potassium channel fraction xK.While the non-blocked sodium channel fraction xNa can enhance the spiking regularity of the clustered neuronal network in most cases.These results indicate that not only sodium channel blocks but also potassium channel blocks could have great influences on the regularity of spike timings in the clustered neuronal networks.Considering the importance of spike timings in neuronal information transforming processes,our results may give some implications for understanding the nonnegligible role of randomness in ion channels in neuronal systems.展开更多
Spiking regularity in a clustered Hodgkin–Huxley(HH) neuronal network has been studied in this letter. A stochastic HH neuronal model with channel blocks has been applied as local neuronal model. Effects of the int...Spiking regularity in a clustered Hodgkin–Huxley(HH) neuronal network has been studied in this letter. A stochastic HH neuronal model with channel blocks has been applied as local neuronal model. Effects of the internal channel noise on the spiking regularity are discussed by changing the membrane patch size. We find that when there is no channel blocks in potassium channels, there exist some intermediate membrane patch sizes at which the spiking regularity could reach to a higher level. Spiking regularity increases with the membrane patch size when sodium channels are not blocked. Namely, depending on different channel blocking states, internal channel noise tuned by membrane patch size could have different influence on the spiking regularity of neuronal networks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.1110209411272065)the Fundamental Research Funds for the Central University of China(Grant No.2013RC0904)
文摘In this paper,we discuss the influences of channel blocks on the spiking regularity in a clustered neuronal network by applying stochastic Hodgkin-Huxley neuronal models as the building blocks.With the aid of simulation results,we reveal that the spiking regularity of the clustered neuronal network could be resonantly enhanced via fine-tuning of the non-blocked potassium channel fraction xK.While the non-blocked sodium channel fraction xNa can enhance the spiking regularity of the clustered neuronal network in most cases.These results indicate that not only sodium channel blocks but also potassium channel blocks could have great influences on the regularity of spike timings in the clustered neuronal networks.Considering the importance of spike timings in neuronal information transforming processes,our results may give some implications for understanding the nonnegligible role of randomness in ion channels in neuronal systems.
基金supported by the National Natural Science Foundation of China(11102094 and 11272024)the Fundamental Research Funds for the Central University(2013RC0904)
文摘Spiking regularity in a clustered Hodgkin–Huxley(HH) neuronal network has been studied in this letter. A stochastic HH neuronal model with channel blocks has been applied as local neuronal model. Effects of the internal channel noise on the spiking regularity are discussed by changing the membrane patch size. We find that when there is no channel blocks in potassium channels, there exist some intermediate membrane patch sizes at which the spiking regularity could reach to a higher level. Spiking regularity increases with the membrane patch size when sodium channels are not blocked. Namely, depending on different channel blocking states, internal channel noise tuned by membrane patch size could have different influence on the spiking regularity of neuronal networks.