In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deployi...In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.展开更多
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ...The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.展开更多
Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on i...Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on its modules.In the preprocessing procedure,we use the linear and nonlinear normalization based on dot density method.Both structural and statistical features are extracted due to the fact that there are some very similar characters in Uyghur literature.In clustering analysis,we adopt the dynamic clustering algorithm based on the minimum spanning tree(MST),and use the k-nearest neighbor matching classification as classifier.The testing results of prototype system show that the recognition rates for characters of the four different types(independent,suffix,intermediate,and initial type) are 74.67%,70.42%,63.33%,and 72.02%,respectively;the recognition rates for the case of five candidates for those characters are 94.34%,94.19%,93.15%,and 95.86%,respectively.The ideas and methods used in this paper have some commonality and usefulness for the recognition of other characters that belong to Altaic languages family.展开更多
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473077,61473078)+4 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)the Fundamental Research Funds for the Central Universities,China(No.15D110423)
文摘In wireless sensor networks(WSNs) with single sink,the nodes close to the sink consume their energy too fast due to transferring a large number of data packages,resulting in the "energy hole" problem.Deploying multiple sink nodes in WSNs is an effective strategy to solve this problem.A multi-sink deployment strategy based on improved particle swarm clustering optimization(IPSCO) algorithm for WSNs is proposed in this paper.The IPSCO algorithm is a combination of the improved particle swarm optimization(PSO) algorithm and K-means clustering algorithm.According to the sink nodes number K,the IPSCO algorithm divides the sensor nodes in the whole network area into K clusters based on the distance between them,making the total within-class scatter to minimum,and outputs the center of each cluster.Then,multiple sink nodes in the center of each cluster can be deployed,to achieve the effects of partition network reasonably and deploy multi-sink nodes optimally.The simulation results show that the deployment strategy can prolong the network lifetime.
文摘The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.
基金Supported by the National Natural Science Foundation of China (61065001)
文摘Based on the analysis of the unique shapes and writing styles of Uyghur characters,we design a framework for prototype character recognition system and carry out a systematic theoretical and experimental research on its modules.In the preprocessing procedure,we use the linear and nonlinear normalization based on dot density method.Both structural and statistical features are extracted due to the fact that there are some very similar characters in Uyghur literature.In clustering analysis,we adopt the dynamic clustering algorithm based on the minimum spanning tree(MST),and use the k-nearest neighbor matching classification as classifier.The testing results of prototype system show that the recognition rates for characters of the four different types(independent,suffix,intermediate,and initial type) are 74.67%,70.42%,63.33%,and 72.02%,respectively;the recognition rates for the case of five candidates for those characters are 94.34%,94.19%,93.15%,and 95.86%,respectively.The ideas and methods used in this paper have some commonality and usefulness for the recognition of other characters that belong to Altaic languages family.