Influenced by the environment and nodes status,the quality of link is not always stable in actual wireless sensor networks( WSNs). Poor links result in retransmissions and more energy consumption. So link quality is a...Influenced by the environment and nodes status,the quality of link is not always stable in actual wireless sensor networks( WSNs). Poor links result in retransmissions and more energy consumption. So link quality is an important issue in the design of routing protocol which is not considered in most traditional clustered routing protocols. A based on energy and link quality's routing protocol( EQRP) is proposed to optimize the clustering mechanism which takes into account energy balance and link quality factors. EQRP takes the advantage of high quality links to increase success rate of single communication and reduce the cost of communication. Simulation shows that,compared with traditional clustered protocol,EQRP can perform 40% better,in terms of life cycle of the whole network.展开更多
Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols ...Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.展开更多
基金Supported by the National Natural Science Foundation of China(No.61300180)Beijing Higher Education Young Elite Teacher Project(No.YETP1755)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.TD2014-01)the Importation and Development of High-caliber Talents Project of Beijing Municipal Institutions(No.CIT&TCD201504039)
文摘Influenced by the environment and nodes status,the quality of link is not always stable in actual wireless sensor networks( WSNs). Poor links result in retransmissions and more energy consumption. So link quality is an important issue in the design of routing protocol which is not considered in most traditional clustered routing protocols. A based on energy and link quality's routing protocol( EQRP) is proposed to optimize the clustering mechanism which takes into account energy balance and link quality factors. EQRP takes the advantage of high quality links to increase success rate of single communication and reduce the cost of communication. Simulation shows that,compared with traditional clustered protocol,EQRP can perform 40% better,in terms of life cycle of the whole network.
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28)+1 种基金National Social Science Fund of China(Grant No.19BGL184)Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01).
文摘Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.