期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
1
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
下载PDF
Stable Initialization Scheme for K-Means Clustering 被引量:15
2
作者 XU Junling XU Baowen +2 位作者 ZHANG Weifeng ZHANG Wei HOU Jun 《Wuhan University Journal of Natural Sciences》 CAS 2009年第1期24-28,共5页
Though K-means is very popular for general clustering, its performance, which generally converges to numerous local minima, depends highly on initial cluster centers. In this paper a novel initialization scheme to sel... Though K-means is very popular for general clustering, its performance, which generally converges to numerous local minima, depends highly on initial cluster centers. In this paper a novel initialization scheme to select initial cluster centers for K-means clustering is proposed. This algorithm is based on reverse nearest neighbor (RNN) search which retrieves all points in a given data set whose nearest neighbor is a given query point. The initial cluster centers computed using this methodology are found to be very close to the desired cluster centers for iterative clustering algorithms. This procedure is applicable to clustering algorithms for continuous data. The application of the proposed algorithm to K-means clustering algorithm is demonstrated. An experiment is carried out on several popular datasets and the results show the advantages of the proposed method. 展开更多
关键词 clustering unsupervised learning k-means initialIZATION
原文传递
Greedy Optimization for K-Means-Based Consensus Clustering 被引量:4
3
作者 Xue Li Hongfu Liu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第2期184-194,共11页
Consensus clustering aims to fuse several existing basic partitions into an integrated one; this has been widely recognized as a promising tool for multi-source and heterogeneous data clustering. Owing to robust and h... Consensus clustering aims to fuse several existing basic partitions into an integrated one; this has been widely recognized as a promising tool for multi-source and heterogeneous data clustering. Owing to robust and high-quality performance over traditional clustering methods, consensus clustering attracts much attention, and much efforts have been devoted to develop this field. In the literature, the K-means-based Consensus Clustering(KCC) transforms the consensus clustering problem into a classical K-means clustering with theoretical supports and shows the advantages over the state-of-the-art methods. Although KCC inherits the merits from K-means,it suffers from the initialization sensitivity. Moreover, the current consensus clustering framework separates the basic partition generation and fusion into two disconnected parts. To solve the above two challenges, a novel clustering algorithm, named Greedy optimization of K-means-based Consensus Clustering(GKCC) is proposed.Inspired by the well-known greedy K-means that aims to solve the sensitivity of K-means initialization, GKCC seamlessly combines greedy K-means and KCC together, achieves the merits inherited by GKCC and overcomes the drawbacks of the precursors. Moreover, a 59-sampling strategy is conducted to provide high-quality basic partitions and accelerate the algorithmic speed. Extensive experiments on 36 benchmark datasets demonstrate the significant advantages of GKCC over KCC and KCC++ in terms of the objective function values and standard deviations and external cluster validity. 展开更多
关键词 k-means consensus clustering initialIZATION greedy optimization
原文传递
An improved probabilistic load flow in distribution networks based on clustering and Point estimate methods 被引量:1
4
作者 Morsal Salehi Mohammad Mahdi Rezaei 《Energy and AI》 2023年第4期253-261,共9页
Clustering approaches are one of the probabilistic load flow(PLF)methods in distribution networks that can be used to obtain output random variables,with much less computation burden and time than the Monte Carlo simu... Clustering approaches are one of the probabilistic load flow(PLF)methods in distribution networks that can be used to obtain output random variables,with much less computation burden and time than the Monte Carlo simulation(MCS)method.However,a challenge of the clustering methods is that the statistical characteristics of the output random variables are obtained with low accuracy.This paper presents a hybrid approach based on clustering and Point estimate methods.In the proposed approach,first,the sample points are clustered based on the𝑙-means method and the optimal agent of each cluster is determined.Then,for each member of the population of agents,the deterministic load flow calculations are performed,and the output variables are calculated.Afterward,a Point estimate-based PLF is performed and the mean and the standard deviation of the output variables are obtained.Finally,the statistical data of each output random variable are modified using the Point estimate method.The use of the proposed method makes it possible to obtain the statistical properties of output random variables such as mean,standard deviation and probabilistic functions,with high accuracy and without significantly increasing the burden of calculations.In order to confirm the consistency and efficiency of the proposed method,the 10-,33-,69-,85-,and 118-bus standard distribution networks have been simulated using coding in Python®programming language.In simulation studies,the results of the proposed method have been compared with the results obtained from the clustering method as well as the MCS method,as a criterion. 展开更多
关键词 Probabilistic load flow(PLF) Distribution network(DN) Monte Carlo simulation(MCS) k-means clustering(KMC) point estimate method(PEM)
原文传递
基于优化初始类中心点的K-means改进算法 被引量:10
5
作者 秦钰 荆继武 +1 位作者 向继 张爱华 《中国科学院研究生院学报》 CAS CSCD 2007年第6期771-777,共7页
K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域... K-means算法是一种重要的聚类算法,在网络信息处理领域有着广泛的应用.由于K-means算法终止于一个局部最优状态,所以初始类中心点的选择会在很大程度上影响其聚类效果.提出了一种K-means算法的改进算法,首先探测数据集中的相对密集区域,再利用这些密集区域生成初始类中心点.该方法能够很好地排除类边缘点和噪声点的影响,并且能够适应数据集中各个实际类别密度分布不平衡的情况,最终获得较好的聚类效果. 展开更多
关键词 聚类 k-means 初始类中心点
下载PDF
K-Means聚类算法的研究 被引量:134
6
作者 周爱武 于亚飞 《计算机技术与发展》 2011年第2期62-65,共4页
K-Means算法是一种经典的聚类算法,有很多优点,也存在许多不足。比如初始聚类数K要事先指定,初始聚类中心选择存在随机性,算法容易生成局部最优解,受孤立点的影响很大等。文中主要针对K-Means算法初始聚类中心的选择以及孤立点问题加以... K-Means算法是一种经典的聚类算法,有很多优点,也存在许多不足。比如初始聚类数K要事先指定,初始聚类中心选择存在随机性,算法容易生成局部最优解,受孤立点的影响很大等。文中主要针对K-Means算法初始聚类中心的选择以及孤立点问题加以改进,首先计算所有数据对象之间的距离,根据距离和的思想排除孤立点的影响,然后提出了一种新的初始聚类中心选择方法,并通过实验比较了改进算法与原算法的优劣。实验表明,改进算法受孤立点的影响明显降低,而且聚类结果更接近实际数据分布。 展开更多
关键词 k-means算法 初始聚类中心 孤立点
下载PDF
基于划分的数据挖掘K-means聚类算法分析 被引量:19
7
作者 曾俊 《现代电子技术》 北大核心 2020年第3期14-17,共4页
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成... 为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。 展开更多
关键词 数据挖掘 聚类分析 K⁃means聚类算法 聚类中心选取 K⁃means算法改进 初始中心点
下载PDF
基于优化初始中心点的K-means文本聚类算法 被引量:8
8
作者 张世博 《计算机与数字工程》 2011年第10期30-31,共2页
K-means算法终止于一个局部最优状态,所以初始中心点的选择会在很大程度上影响其聚类效果。该文针对K-means算法所存在的问题,提出了一种优化初始中心点的算法。实验表明可以有效减少迭代次数并提高聚类精度,最终获得较好的聚类效果。
关键词 K均值 聚类 初始中心点
下载PDF
基于多维网格空间的改进K-means聚类算法 被引量:17
9
作者 邵伦 周新志 +1 位作者 赵成萍 张旭 《计算机应用》 CSCD 北大核心 2018年第10期2850-2855,共6页
K-means算法是被广泛使用的一种聚类算法,传统的K-means算法中初始聚类中心的选择具有随机性,易使算法陷入局部最优,聚类结果不稳定。针对此问题,引入多维网格空间的思想,首先将样本集映射到一个虚拟的多维网格空间结构中,然后从中搜索... K-means算法是被广泛使用的一种聚类算法,传统的K-means算法中初始聚类中心的选择具有随机性,易使算法陷入局部最优,聚类结果不稳定。针对此问题,引入多维网格空间的思想,首先将样本集映射到一个虚拟的多维网格空间结构中,然后从中搜索出包含样本数最多且距离较远的子网格作为初始聚类中心网格,最后计算出各初始聚类中心网格中所包含样本的均值点来作为初始聚类中心。此法选择出来的初始聚类中心与实际聚类中心拟合度高,进而可据此初始聚类中心稳定高效地得到最终的聚类结果。通过使用计算机模拟数据集和UCI机器学习数据集进行测试,结果表明改进算法的迭代次数和错误率比较稳定,且均小于传统K-means算法测试结果的平均值,能有效避免陷入局部最优,并且聚类结果稳定。 展开更多
关键词 k-means算法 聚类算法 初始聚类中心 多维网格空间 均值点
下载PDF
基于改进K-means的羊体点云分割方法 被引量:3
10
作者 刘娜 薛河儒 马学磊 《江西农业大学学报》 CAS CSCD 北大核心 2020年第5期1078-1086,共9页
【目的】针对具有复杂背景的羊体点云图像利用传统点云分割方法导致分割效果不准确的问题,探究采用一种改进的K-means点云分割方法对其进行分割的准确性。【方法】首先,试验根据羊体图像的点云数据特征,对三维空间中的点云坐标及点云间... 【目的】针对具有复杂背景的羊体点云图像利用传统点云分割方法导致分割效果不准确的问题,探究采用一种改进的K-means点云分割方法对其进行分割的准确性。【方法】首先,试验根据羊体图像的点云数据特征,对三维空间中的点云坐标及点云间的空间距离进行重新定义。其次,为新定义的三维点云间距离引入曲率调整参数,通过对羊体曲率信息的调整,进而约束三维空间中点云间的距离。最后,为避免传统K-means分割算法随机选择初始聚类中心导致的分割结果不稳定且分割效果不准确的缺陷,选择主曲率最大的前K个点作为初始聚类中心。【结果】试验通过调节曲率约束调整参数的值,实现了羊体点云数据曲率变化显著区域的精准分割。利用曲率排序选取初始聚类中心,保证了分割结果的唯一性,提高分割结果的准确性。【结论】改进的Kmeans点云分割方法能有效地对羊体点云数据进行分割,且分割结果具有稳定性,为后续无接触羊体测点识别提供试验依据。 展开更多
关键词 点云分割 k-means 曲率 初始聚类中心
下载PDF
一种优化初始聚类中心的k-means算法 被引量:2
11
作者 张明微 吴海涛 《上海师范大学学报(自然科学版)》 2016年第5期599-603,共5页
随机选择初始聚类中心的k-means算法易使聚类陷入局部最优解、聚类结果不稳定且受孤立点影响大等问题.针对这些问题,提出了一种优化初始聚类中心的方法及孤立点排除法.该算法首先选择距离最远的两点加入初始化中心,再根据这两点将原始... 随机选择初始聚类中心的k-means算法易使聚类陷入局部最优解、聚类结果不稳定且受孤立点影响大等问题.针对这些问题,提出了一种优化初始聚类中心的方法及孤立点排除法.该算法首先选择距离最远的两点加入初始化中心,再根据这两点将原始簇分成两个聚簇,在这两个簇中挑选方差较大的簇按照一定的规则进行分裂直至找到k个中心,初始中心的选择过程中用到孤立点排除法.在UCI数据集及人造含一定比例的噪音数据集下,通过实验比较了改进算法与其他算法的优劣.实验表明,改进后的算法不仅受孤立点的影响小、稳定性好而且准确度也高. 展开更多
关键词 初始聚类中心 k-means算法 孤立点排除法 聚簇 UCI数据集
下载PDF
基于距离和密度的PBK-means算法 被引量:2
12
作者 魏文浩 唐泽坤 刘刚 《计算机工程》 CAS CSCD 北大核心 2020年第9期68-75,共8页
K-means算法初始中心点选择的随机性以及对噪声点的敏感性,使得聚类结果易陷入局部最优解,为获得最佳初始聚类中心,提出一种基于距离和密度的并行二分K-means算法。计算数据集的平均样本距离,根据数据点之间的距离计算数据的权重,选择... K-means算法初始中心点选择的随机性以及对噪声点的敏感性,使得聚类结果易陷入局部最优解,为获得最佳初始聚类中心,提出一种基于距离和密度的并行二分K-means算法。计算数据集的平均样本距离,根据数据点之间的距离计算数据的权重,选择最大权重数据点作为第一个中心点,小于平均样本距离的数据点不参加下一次聚类,将剩余数据点的权重与中心点距离相乘,选择值最大的数据点作为下一个中心点,得到两个中心点后按照距离对数据进行分配,将每个中心点代表的类分为两类后在每类上继续重复上述步骤。通过模仿细胞分裂的方法对数据进行切分,构建一棵满二叉树,当叶子结点数超过类别数k时停止聚类,合并叶子结点得到k个初始聚类中心执行K-means算法。在UCI公开数据集上进行测试,结果表明,对比传统K-means算法、Canopy-Kmeans算法、二分K-means算法、WK-means算法、MWK-means算法和DCK-means算法,该算法效率更高,具有较好的聚类效果。 展开更多
关键词 二分k-means算法 聚类中心 初始中心点 权重 数据挖掘
下载PDF
优化初始聚类中心选择的K-means算法 被引量:6
13
作者 杨一帆 贺国先 李永定 《电脑知识与技术》 2021年第5期252-255,共4页
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性。针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法。该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后... K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性。针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法。该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的计算。按照距离最近原则将孤立点分配到相应类中完成整个算法。实验结果表明,改进的K-means算法能提高聚类的准确率,减少迭代次数,得到更好的聚类结果。 展开更多
关键词 聚类 k-means 最近邻点密度 初始聚类中心 孤立点
下载PDF
SVD优化初始簇中心的K-means中文文本聚类算法 被引量:9
14
作者 戴月明 王明慧 +1 位作者 张明 王艳 《系统仿真学报》 CAS CSCD 北大核心 2018年第10期3835-3842,共8页
为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singul... 为了改善传统K-means算法在聚类过程中,聚类数目K难以准确预设,聚类结果受初始中心影响,对噪声点敏感,不稳定等缺点,同时针对文本聚类中文本向量化后数据维数较高,空间分布稀疏,存在潜在语义结构等问题,提出了一种利用奇异值分解(Singular Value Decomposition, SVD)的物理意义进行粗糙分类,再结合K-means算法的中文文本聚类优化算法(SVD-Kmeans)。新算法利用SVD分解的数学意义对文本数据进行了平滑处理,同时利用SVD分解的物理意义对文本数据进行粗糙分类,将分类的结果作为K-means算法的初始聚类中心点。实验结果表明,相比其他K-means及其改进算法,SVD-Kmeans算法的聚类质量F-Measure值有明显提升。 展开更多
关键词 SVD 文本聚类 k-means 初始中心点
下载PDF
基于概念格的K-Means算法研究
15
作者 李艳霞 史一民 李冠宇 《计算机工程与设计》 CSCD 北大核心 2011年第2期656-658,662,共4页
针对现有的K-Means算法K值需要人工赋值、随机选取初始中心点、文本表示维度高且缺乏语义的缺陷,提出了一种基于概念格的K-Means算法——K-MeansBCC(K-means algorithm based on concept lattice)。将文本集经预处理转化为形式背景,在... 针对现有的K-Means算法K值需要人工赋值、随机选取初始中心点、文本表示维度高且缺乏语义的缺陷,提出了一种基于概念格的K-Means算法——K-MeansBCC(K-means algorithm based on concept lattice)。将文本集经预处理转化为形式背景,在此基础上生成概念格;利用概念格中的概念表示文本,根据文本中概念的权重确定K值、选取初始中心点。最后设计了文本间的概念相似度计算公式,并由K-Means算法产生聚类结果。实验结果表明,该算法提高了聚类的效率和准确性。 展开更多
关键词 k-means算法 概念格 聚类 概念相似度 初始中心点
下载PDF
从亲疏度论古钞本《玉篇》声母系统特征及分合关系
16
作者 姜永超 黄仁瑄 《语言科学》 北大核心 2024年第2期184-198,共15页
成书于公元543年的《玉篇》是研究南北朝时期雅言的重要材料。已有研究中有24个声母存在分合争议。将相关分析和距离聚类分析相结合,考察每个声母或共性声母与其他声母的亲疏度发现:1)相似度、亲疏度与诸家无分合争议的声母结论基本相同... 成书于公元543年的《玉篇》是研究南北朝时期雅言的重要材料。已有研究中有24个声母存在分合争议。将相关分析和距离聚类分析相结合,考察每个声母或共性声母与其他声母的亲疏度发现:1)相似度、亲疏度与诸家无分合争议的声母结论基本相同;2)每组声母具有不同的分化速度,以匣云为参照,帮非、滂敷、透彻等不分;以清心为参照,端知等不分;3)共性声母聚类说明轻重唇音、舌头舌上音不分,精组与二等莊组分;4)声母亲疏度说明泥娘最为相似,两母不分,而日母处于二级聚类结果,相对于泥娘二母,泥日分。 展开更多
关键词 古钞本《玉篇》 声母系统 相关性 亲疏聚类 参照点
下载PDF
一种用于道路障碍物识别的激光点云聚类算法 被引量:9
17
作者 张名芳 刘新雨 +2 位作者 付锐 蒋拯民 李星星 《激光与红外》 CAS CSCD 北大核心 2017年第9期1186-1192,共7页
提出一种适用于道路障碍物识别检测的聚类算法,该算法用来处理各向异性分布的激光点云数据。算法的基本思想是:针对点云空间分布的实时变化,提出在线学习合并阈值的层次聚类算法,以确定聚类数搜索范围上界和初始聚类中心的待选点集;然... 提出一种适用于道路障碍物识别检测的聚类算法,该算法用来处理各向异性分布的激光点云数据。算法的基本思想是:针对点云空间分布的实时变化,提出在线学习合并阈值的层次聚类算法,以确定聚类数搜索范围上界和初始聚类中心的待选点集;然后提出距离乘积最大化方法,对待选点集进行初始化排序,既结合点云的空间密度分布改善了聚类结果,又克服了传统K-means算法初始聚类中心难确定的问题;最后选取Silhouette和距离评价函数为聚类有效性指标分析算法的聚类效果,确定最佳聚类数。用以上自适应、在线学习的算法对2.5D激光雷达采集的点云数据进行聚类,并与其他两种聚类算法进行实际试验比较发现,本算法可以正确分割大多数空间分布各异且相互连接的障碍物。 展开更多
关键词 k-means算法 激光点云 层次聚类 初始聚类中心
下载PDF
K均值聚类算法初始质心选择的改进 被引量:15
18
作者 孙可 刘杰 王学颖 《沈阳师范大学学报(自然科学版)》 CAS 2009年第4期448-450,共3页
聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的... 聚类分析在信息检索和数据挖掘等领域都有很广泛的应用,K均值聚类算法是一个比较简洁和快速的聚类算法,但是它存在着初始聚类个数必须事先设定以及初始质心的选择也具有随机性等缺陷,造成聚类的结果不是最优的。针对K均值聚类算法中的随机指定初始质心的缺点,提出了基于密度和最近邻相似度的初始质心选择算法,实验显示该算法可以生成质量较高而且较稳定的聚类结果,但是改进的算法需要事先设定最近邻相似度的阈值计算量较大等缺点,还有待改进。 展开更多
关键词 聚类 K均值聚类算法 初始质心 密度 最近邻相似度
下载PDF
一种聚类神经网络初始聚类中心的确定方法 被引量:5
19
作者 孙辉 李文 聂冰 《系统仿真学报》 CAS CSCD 2004年第4期775-777,共3页
在基于聚类神经网络提取模糊规则方法中,其初始聚类数及聚类中心往往是事先给定的,这样会给规则提取带来一定的盲目性,并影响神经网络的学习时间和聚类效果。本文提出了一种根据测量数据集自动确定聚类神经网络初始聚类中心的方法,该方... 在基于聚类神经网络提取模糊规则方法中,其初始聚类数及聚类中心往往是事先给定的,这样会给规则提取带来一定的盲目性,并影响神经网络的学习时间和聚类效果。本文提出了一种根据测量数据集自动确定聚类神经网络初始聚类中心的方法,该方法可客观地确定聚类数和初始聚类中心,能够有效地缩短神经网络的学习时间。 展开更多
关键词 初始聚类中心 聚类算法 确切度 孤立点
下载PDF
一种基于影响因子的快速K-均值算法 被引量:4
20
作者 冷明伟 陈晓云 颜清 《计算机应用》 CSCD 北大核心 2007年第12期3042-3044,共3页
K-均值聚类算法的执行时间过度依赖于初始点的选取,但是在实际问题中并不知道k的取值和怎样才能有效地选取初始点。在对K-均值算法中初始点的选取进行深入研究的基础上,提出了一种有效的初始点选取算法。现存的类间相似度并不能很好地... K-均值聚类算法的执行时间过度依赖于初始点的选取,但是在实际问题中并不知道k的取值和怎样才能有效地选取初始点。在对K-均值算法中初始点的选取进行深入研究的基础上,提出了一种有效的初始点选取算法。现存的类间相似度并不能很好地度量两个类的相似性,为此提出了一种新颖的度量方法:类间影响因子,使用类间影响因子对类进行合并。该方法和上面提出的初始点选取算法能够根据数据集本身的特性快速地自动选取初始中心并给出初始点的个数。最后用高斯数据集对算法进行测试,得到了一个令人满意的结果。 展开更多
关键词 聚类 K-均值 初始点 影响因子
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部