Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated s...Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated segments,nonconventional luminophores generally possess merely nonconjugated or short-conjugated structures based on electron-rich units.Fluorescence,phosphorescence,and even color tunable room temperature phosphorescence(RTP)could be readily obtained from these unique luminophores.Herein,we summarized recent advances in the phosphorescence of nonconventional luminophores,with focus on RTP and color tunable RTP.The clustering-triggered emission(CTE)mechanism could be applied to explain the luminescence as clustering-triggered phosphorescence(CTP).Furthermore,strategies toward the RTP regulation are summarized,and corresponding applications are demonstrated.展开更多
In recent years, nonconventional luminogens free of aromatic groups have attracted extensive attention due to their academic importance and promising wide applications. Whilst previous studies generally focused on flu...In recent years, nonconventional luminogens free of aromatic groups have attracted extensive attention due to their academic importance and promising wide applications. Whilst previous studies generally focused on fluorescence from aliphatic amine or carbonylcontaining systems, less attention has been paid to room temperature phosphorescence(RTP) and the systems with predominant oxygen functionalities. In this work, photophysical properties of the polyhydroxy polymers, including microcrystalline cellulose(MCC), 2-hydroxyethyl cellulose(HEC), hydroxypropyl cellulose(HPC), and cellulose acetate(CA), were studied and compared. While MCC,HEC, and HPC solids showed bright emission alongside distinct RTP, CA demonstrated relatively low intensity of solid emission without noticeable RTP. Their emissions were explained in terms of the clustering-triggered emission(CTE) mechanism and conformation rigidification. Additionally, on account of its intrinsic emission, concentrated HEC aqueous solution could be used as the probe for the detection of 2,4,6-trinitrophenol(TNP).展开更多
Nonconventional luminophores without large conjugated structures are attracting increasing attention for their unique aggregation-induced emission(AIE)properties and promising applications in optoelectronic and biomed...Nonconventional luminophores without large conjugated structures are attracting increasing attention for their unique aggregation-induced emission(AIE)properties and promising applications in optoelectronic and biomedical areas.The emission mechanism,however,remains elusive,which makes rational molecular design difficult.Recently,we proposed the clustering-triggered emission(CTE)mechanism to illustrate the emission.The clustering of electron-rich nonconventional chromophores withπand/or n electrons and consequent electron cloud overlap is crucial to the luminescence.Herein,based on the CTE mechanism,nonaromatic polymers containing multitype heteroatoms(i.e.,O,N,and S)and involving amide(CONH)and sulfide(-S-)groups were designed and synthesized through facile thiol-ene click chemistry.The resulting polymers demonstrated typical concentration-enhanced emission,AIE phenomenon,and excitation-dependent emission.Notably,compared with polysulfides,these polymers exhibited much higher solid-state emission efficiencies,because of the incorporation of amide units,which contributed to the formation of emissive clusters with highly rigidified conformations through effective hydrogen bonding.Furthermore,distinct persistent cryogenic phosphorescence or even room temperature phosphorescence(RTP)was noticed.These photophysical behaviors can well be rationalized in terms of the CTE mechanism,indicating the feasibility of rational molecular design and luminescence regulation.展开更多
Nonaromatic amino acids are generally believed to be nonemissive, owing to their lack of apparently remarkable conjugation within individual molecules. Here we report the intrinsic visible emission of nonaromatic amin...Nonaromatic amino acids are generally believed to be nonemissive, owing to their lack of apparently remarkable conjugation within individual molecules. Here we report the intrinsic visible emission of nonaromatic amino acids and poly(amino acids) in concentrated solutions and solid powders. This unique and widespread luminescent characteristic can be well rationalized by the clustering-triggered emission(CTE) mechanism, namely the clustering of nonconventional chromophores(i.e. amino, carbonyl,and hydroxyl) and subsequent electron cloud overlap with simultaneous conformation rigidification. Such CTE mechanism is further supported by the single crystal structure analysis, from which 3 D through space electronic communications are uncovered.Besides prompt fluorescence, room temperature phosphorescence(RTP) is also detected from the solids. Moreover, persistent RTP is observed in the powders of exampled poly(amino acids) of ε-poly-L-lysine(.-PLL) after ceasing UV irradiation. These results not only illustrate the feasibility of employing the building blocks of nonaromatic amino acids in the exploration of new luminescent biomolecules, but also provide significant implications for the emissions of peptides and proteins at aggregated or crystalline states. Meanwhile, they may also shed lights on further understanding of autofluorescence from biological systems.展开更多
Luminescent materials show great potential in various applications.Traditional aggregation-induced emission(AIE)luminogens are mostly produced by complex organic synthesis and have poor hydrophilicity and biocompatibi...Luminescent materials show great potential in various applications.Traditional aggregation-induced emission(AIE)luminogens are mostly produced by complex organic synthesis and have poor hydrophilicity and biocompatibility,which limit their practical applications.Therefore,it is of great significance to develop fluorescent materials with good hydrophilicity and biocompatibility,and biomacromolecules with these properties have attracted our attention.Partial biomacromolecules can generate unique new fluorophores during the gelation process to obtain hydrogels with good fluorescence properties.In addition,biomacromolecules can be modified with fluorescent groups to obtain fluorescent materials with excellent performance,thus improving the hydrophilicity and biocompatibility of fluorophore.In particular,grafting aggregation-caused quenching(ACQ)luminogens onto biomacromolecules can even effectively inhibit the aggregation and self-quenching of luminogens.It is well known that aromatic biological macromolecules such as green fluorescent protein have intrinsic fluorescence.Intrinsic fluorescence is also observed in nonaromatic biological macromolecules without traditional chromophores such as chitosan,cellulose and sodium alginate.The luminescence of nonaromatic biomacromolecule can be rationalized by the clustering-triggered emission(CTE)mechanism,namely,clustering of nonconventional chromophores and subsequent electron overlap and conformation rigidification are accountable for the emssion.In this review,fluorescence gels obtained from biomacromolecules,biomacromolecules modified with fluorophores,and the intrinsic luminescence of biomacromolecular luminogens are assessed.This review will help to develop low-cost,biocompatible luminescent materials and has great significance for comprehending the luminescence of nonconventional luminophores and expanding the application of luminescent compounds.展开更多
Intrinsic emission from unorthodox luminogens without traditional conjugated building blocks is drawing increasing attention.However,the emission mechanism is still controversial.Herein,we demonstrate the intriguing e...Intrinsic emission from unorthodox luminogens without traditional conjugated building blocks is drawing increasing attention.However,the emission mechanism is still controversial.Herein,we demonstrate the intriguing emission from perfluorosulfonate ionomers(PFSIs),which can be explained by the clustering triggered emission(CTE)mechanism.Despite being free of any conventional chromophores,PFSIs exhibit bright emission and multi-color phosphorescence(77 K)in concentrated solutions,powders and membranes with obvious aggregation-induced emission(AIE)characteristics.Clustered sulfonic acids are responsible for the light emission,and their connection and evolution are deeply explored via X-ray diffraction(XRD)and small angel X-ray scattering(SAXS),in which the electron overlap determined by the clustered status results in the extended conjugation and simultaneously rigidified conformations.These results demonstrate that it is feasible to use fluorescence analysis to explore the ionic cluster structure and evolution of PFSI,and it can be applied in the pure organic luminescent field as well.展开更多
Nonconjugated polymer dots(PDs)without largely conjugated structures entitle their advantages such as environment friendliness,nontoxicity,and intrinsic fluorescence.However,color-tunable PDs remain a challenge.Herein...Nonconjugated polymer dots(PDs)without largely conjugated structures entitle their advantages such as environment friendliness,nontoxicity,and intrinsic fluorescence.However,color-tunable PDs remain a challenge.Herein,polyvinyl pyrrolidone(PVP)and ascorbic acid(AA)are used to synthesize nonconjugated PDs,namely,PA PDs with intensive blue emission.The introduction of a third component,m-phenylenediamine(MPD),redshifted the emission to green.The asprepared color-tunable blue to green emissive PDs exhibit excellent properties,whether in solution or in solid state,originated from the mechanism of clusteringtriggered emission(CTE)induced by the overlap of electron-rich atoms,the strong inter/intrachain interaction.The quantum yields of blue and green PDs reached up to 15.07%and 28.22%,respectively.Furthermore,PA PDs were successfully applied to the highly efficient photocatalytic degradation for dyes:methylene blue(MB)and methyl orange(MO)were degraded by 89.9%and 93.8%within 20 min under visible light,respectively.展开更多
基金supported by the National Natural Science Foundation of China(51822303,52073172)the Natural Science Foundation of Shanghai(20ZR1429400)+1 种基金“Shuguang Program”(20SG11)cosponsored by Shanghai Education Development Foundation and Shanghai Municipal Education Commissionthe State Key Laboratory of BioFibers and Eco-Textiles(Qingdao University,KF2020107)。
文摘Nonconventional luminophores have attracted significant attention for their unique photophysical properties and potential applications in different areas.Unlike classic luminogens consisting of remarkably conjugated segments,nonconventional luminophores generally possess merely nonconjugated or short-conjugated structures based on electron-rich units.Fluorescence,phosphorescence,and even color tunable room temperature phosphorescence(RTP)could be readily obtained from these unique luminophores.Herein,we summarized recent advances in the phosphorescence of nonconventional luminophores,with focus on RTP and color tunable RTP.The clustering-triggered emission(CTE)mechanism could be applied to explain the luminescence as clustering-triggered phosphorescence(CTP).Furthermore,strategies toward the RTP regulation are summarized,and corresponding applications are demonstrated.
基金financially supported by the National Natural Science Foundation of China (Nos. 51603050 and 51863006)the Natural Science Foundation of Guangxi (Nos. 2016GXNSFBA380196, 2016GXNSFBA380064)+1 种基金Guangxi University Young and Middle-aged Teachers Basic Ability Promotion Project (No. KY2016YB316)The Open Project Foundation of Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials (15-KF-10)
文摘In recent years, nonconventional luminogens free of aromatic groups have attracted extensive attention due to their academic importance and promising wide applications. Whilst previous studies generally focused on fluorescence from aliphatic amine or carbonylcontaining systems, less attention has been paid to room temperature phosphorescence(RTP) and the systems with predominant oxygen functionalities. In this work, photophysical properties of the polyhydroxy polymers, including microcrystalline cellulose(MCC), 2-hydroxyethyl cellulose(HEC), hydroxypropyl cellulose(HPC), and cellulose acetate(CA), were studied and compared. While MCC,HEC, and HPC solids showed bright emission alongside distinct RTP, CA demonstrated relatively low intensity of solid emission without noticeable RTP. Their emissions were explained in terms of the clustering-triggered emission(CTE) mechanism and conformation rigidification. Additionally, on account of its intrinsic emission, concentrated HEC aqueous solution could be used as the probe for the detection of 2,4,6-trinitrophenol(TNP).
基金This work was supported by the National Natural Science Foundation of China(Nos.51822303,52073172)the Natural Science Foundation of Shanghai of China(No.20ZR1429400).
文摘Nonconventional luminophores without large conjugated structures are attracting increasing attention for their unique aggregation-induced emission(AIE)properties and promising applications in optoelectronic and biomedical areas.The emission mechanism,however,remains elusive,which makes rational molecular design difficult.Recently,we proposed the clustering-triggered emission(CTE)mechanism to illustrate the emission.The clustering of electron-rich nonconventional chromophores withπand/or n electrons and consequent electron cloud overlap is crucial to the luminescence.Herein,based on the CTE mechanism,nonaromatic polymers containing multitype heteroatoms(i.e.,O,N,and S)and involving amide(CONH)and sulfide(-S-)groups were designed and synthesized through facile thiol-ene click chemistry.The resulting polymers demonstrated typical concentration-enhanced emission,AIE phenomenon,and excitation-dependent emission.Notably,compared with polysulfides,these polymers exhibited much higher solid-state emission efficiencies,because of the incorporation of amide units,which contributed to the formation of emissive clusters with highly rigidified conformations through effective hydrogen bonding.Furthermore,distinct persistent cryogenic phosphorescence or even room temperature phosphorescence(RTP)was noticed.These photophysical behaviors can well be rationalized in terms of the CTE mechanism,indicating the feasibility of rational molecular design and luminescence regulation.
基金supported by the National Natural Science Foundation of China(51473092)the Shanghai Rising-Star Program(15QA1402500)
文摘Nonaromatic amino acids are generally believed to be nonemissive, owing to their lack of apparently remarkable conjugation within individual molecules. Here we report the intrinsic visible emission of nonaromatic amino acids and poly(amino acids) in concentrated solutions and solid powders. This unique and widespread luminescent characteristic can be well rationalized by the clustering-triggered emission(CTE) mechanism, namely the clustering of nonconventional chromophores(i.e. amino, carbonyl,and hydroxyl) and subsequent electron cloud overlap with simultaneous conformation rigidification. Such CTE mechanism is further supported by the single crystal structure analysis, from which 3 D through space electronic communications are uncovered.Besides prompt fluorescence, room temperature phosphorescence(RTP) is also detected from the solids. Moreover, persistent RTP is observed in the powders of exampled poly(amino acids) of ε-poly-L-lysine(.-PLL) after ceasing UV irradiation. These results not only illustrate the feasibility of employing the building blocks of nonaromatic amino acids in the exploration of new luminescent biomolecules, but also provide significant implications for the emissions of peptides and proteins at aggregated or crystalline states. Meanwhile, they may also shed lights on further understanding of autofluorescence from biological systems.
基金Shandong Provincial Natural Science Foundation(ZR2019YQ19)Project of Shandong Province Higher Educational Science and Technology Program(2019KJA026)+1 种基金the National Natural Science Foundation of China(51822303)State Key Laboratory of Bio-Fibers and Eco-Textiles(ZKT13,ZKT11)。
文摘Luminescent materials show great potential in various applications.Traditional aggregation-induced emission(AIE)luminogens are mostly produced by complex organic synthesis and have poor hydrophilicity and biocompatibility,which limit their practical applications.Therefore,it is of great significance to develop fluorescent materials with good hydrophilicity and biocompatibility,and biomacromolecules with these properties have attracted our attention.Partial biomacromolecules can generate unique new fluorophores during the gelation process to obtain hydrogels with good fluorescence properties.In addition,biomacromolecules can be modified with fluorescent groups to obtain fluorescent materials with excellent performance,thus improving the hydrophilicity and biocompatibility of fluorophore.In particular,grafting aggregation-caused quenching(ACQ)luminogens onto biomacromolecules can even effectively inhibit the aggregation and self-quenching of luminogens.It is well known that aromatic biological macromolecules such as green fluorescent protein have intrinsic fluorescence.Intrinsic fluorescence is also observed in nonaromatic biological macromolecules without traditional chromophores such as chitosan,cellulose and sodium alginate.The luminescence of nonaromatic biomacromolecule can be rationalized by the clustering-triggered emission(CTE)mechanism,namely,clustering of nonconventional chromophores and subsequent electron overlap and conformation rigidification are accountable for the emssion.In this review,fluorescence gels obtained from biomacromolecules,biomacromolecules modified with fluorophores,and the intrinsic luminescence of biomacromolecular luminogens are assessed.This review will help to develop low-cost,biocompatible luminescent materials and has great significance for comprehending the luminescence of nonconventional luminophores and expanding the application of luminescent compounds.
基金supported by the Petrochina Petrochemical Research Institute(LH-17-02-07-05)Open Foundation from State Key Laboratory of Fluorinated Functional Membrane Material。
文摘Intrinsic emission from unorthodox luminogens without traditional conjugated building blocks is drawing increasing attention.However,the emission mechanism is still controversial.Herein,we demonstrate the intriguing emission from perfluorosulfonate ionomers(PFSIs),which can be explained by the clustering triggered emission(CTE)mechanism.Despite being free of any conventional chromophores,PFSIs exhibit bright emission and multi-color phosphorescence(77 K)in concentrated solutions,powders and membranes with obvious aggregation-induced emission(AIE)characteristics.Clustered sulfonic acids are responsible for the light emission,and their connection and evolution are deeply explored via X-ray diffraction(XRD)and small angel X-ray scattering(SAXS),in which the electron overlap determined by the clustered status results in the extended conjugation and simultaneously rigidified conformations.These results demonstrate that it is feasible to use fluorescence analysis to explore the ionic cluster structure and evolution of PFSI,and it can be applied in the pure organic luminescent field as well.
基金Fundamental Scientific Research Business Expenses of Central Universities,Grant/Award Number:2342021DUT21ZD211。
文摘Nonconjugated polymer dots(PDs)without largely conjugated structures entitle their advantages such as environment friendliness,nontoxicity,and intrinsic fluorescence.However,color-tunable PDs remain a challenge.Herein,polyvinyl pyrrolidone(PVP)and ascorbic acid(AA)are used to synthesize nonconjugated PDs,namely,PA PDs with intensive blue emission.The introduction of a third component,m-phenylenediamine(MPD),redshifted the emission to green.The asprepared color-tunable blue to green emissive PDs exhibit excellent properties,whether in solution or in solid state,originated from the mechanism of clusteringtriggered emission(CTE)induced by the overlap of electron-rich atoms,the strong inter/intrachain interaction.The quantum yields of blue and green PDs reached up to 15.07%and 28.22%,respectively.Furthermore,PA PDs were successfully applied to the highly efficient photocatalytic degradation for dyes:methylene blue(MB)and methyl orange(MO)were degraded by 89.9%and 93.8%within 20 min under visible light,respectively.