The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the s...The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the sleeve, the dynamic model of the sleeve detach and reunion drive was theoretically measured, and it was verified that the device is simple to operate and convenient to maintain, thus it has great social values.展开更多
Transfemoral amputees(TAs)have difficulty in mobility during walking,such as restricted movement of lower extremity and body instability,yet few transfemoral prostheses have explored human-like multiple motion charact...Transfemoral amputees(TAs)have difficulty in mobility during walking,such as restricted movement of lower extremity and body instability,yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology,biomechanics,and stability of human lower extremity.In this work,the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology.A hybrid transfemoral prosthetic(HTP)mechanism with multigait functions is proposed to recover the gait functions of TAs.The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism.Inspired by motion-energy coupling relationship of the knee,a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed.Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint.Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.展开更多
文摘The design of sleeve detach and reunion drive device of screw melt ex- truder equipment was optimized, based on the present installation of hygraulic drive device to achieve the mechanical opening and closing of the sleeve, the dynamic model of the sleeve detach and reunion drive was theoretically measured, and it was verified that the device is simple to operate and convenient to maintain, thus it has great social values.
文摘Transfemoral amputees(TAs)have difficulty in mobility during walking,such as restricted movement of lower extremity and body instability,yet few transfemoral prostheses have explored human-like multiple motion characteristics by simple structures to fit the kinesiology,biomechanics,and stability of human lower extremity.In this work,the configurations of transfemoral prosthetic mechanism are synthesized in terms of human lower-extremity kinesiology.A hybrid transfemoral prosthetic(HTP)mechanism with multigait functions is proposed to recover the gait functions of TAs.The kinematic and mechanical performances of the designed parallel mechanism are analyzed to verify their feasibility in transfemoral prosthetic mechanism.Inspired by motion-energy coupling relationship of the knee,a wearable energy-damper clutched device that can provide energy in knee stance flexion to facilitate the leg off from the ground and can impede the leg’s swing velocity for the next stance phase is proposed.Its co-operation with the springs in the prismatic pairs enables the prosthetic mechanism to have the energy recycling ability under the gait rhythm of the knee joint.Results demonstrate that the designed HTP mechanism can replace the motion functions of the knee and ankle to realize its multimode gait and effectively decrease the peak power of actuators from 94.74 to 137.05 W while maintaining a good mechanical adaptive stability.