Perception and manipulation tasks for robotic manipulators involving highly-cluttered objects have become increasingly indemand for achieving a more efficient problem solving method in modern industrial environments.B...Perception and manipulation tasks for robotic manipulators involving highly-cluttered objects have become increasingly indemand for achieving a more efficient problem solving method in modern industrial environments.But,most of the available methods for performing such cluttered tasks failed in terms of performance,mainly due to inability to adapt to the change of the environment and the handled objects.Here,we propose a new,near real-time approach to suction-based grasp point estimation in a highly cluttered environment by employing an affordance-based approach.Compared to the state-of-the-art,our proposed method offers two distinctive contributions.First,we use a modified deep neural network backbone for the input of the semantic segmentation,to classify pixel elements of the input red,green,blue and depth(RGBD)channel image which is then used to produce an affordance map,a pixel-wise probability map representing the probability of a successful grasping action in those particular pixel regions.Later,we incorporate a high speed semantic segmentation to the system,which makes our solution have a lower computational time.This approach does not need to have any prior knowledge or models of the objects since it removes the step of pose estimation and object recognition entirely compared to most of the current approaches and uses an assumption to grasp first then recognize later,which makes it possible to have an object-agnostic property.The system was designed to be used for household objects,but it can be easily extended to any kind of objects provided that the right dataset is used for training the models.Experimental results show the benefit of our approach which achieves a precision of 88.83%,compared to the 83.4%precision of the current state-of-the-art.展开更多
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance...In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.展开更多
In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar ...In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investi...Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.展开更多
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de...Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.展开更多
Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellat...Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.展开更多
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati...The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.展开更多
To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied...To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.展开更多
Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous...Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
The desire to speed up secondary storage systems has lead to the development of redundant arrays of independent disks (RAID) which incorporate redundancy utilizing erasure codes. A 'cluttered ordering' is utilized...The desire to speed up secondary storage systems has lead to the development of redundant arrays of independent disks (RAID) which incorporate redundancy utilizing erasure codes. A 'cluttered ordering' is utilized for designing an effective writing order to a RAID system. Cohen, Colboum and Froncek (2001) gave a cyclic construction of cluttered orderings for the complete graph by utilizing the notion of a 'wrapped p-labelling'. Since wrapped p-labellings as cluttered orderings for the complete graph look such as ladders, they are also called as ladder orderings. Cohen and Colboum (2004) gave a characteristic of ladder orderings. In this paper, we give an algorithm in order to generate ladder orderings.展开更多
The design of large disk array architectures leads to interesting combinatorial problems. Minimizing the number of disk operations when writing to consecutive disks leads to the concept of “cluttered orderings” whic...The design of large disk array architectures leads to interesting combinatorial problems. Minimizing the number of disk operations when writing to consecutive disks leads to the concept of “cluttered orderings” which were introduced for the complete graph by Cohen et al. (2001). Mueller et al. (2005) adapted the concept of wrapped Δ-labellings to the complete bipartite case. In this paper, we give some sequence in order to generate wrapped Δ-labellings as cluttered orderings for the complete bipartite graph. New sequence we give is different from the sequences Mueller et al. gave, though the same graphs in which these sequences are labeled.展开更多
Robotic grasps play an important role in the service and industrial fields,and the robotic arm can grasp the object properly depends on the accuracy of the grasping detection result.In order to predict grasping detect...Robotic grasps play an important role in the service and industrial fields,and the robotic arm can grasp the object properly depends on the accuracy of the grasping detection result.In order to predict grasping detection positions for known or unknown objects by a modular robotic system,a convolutional neural network(CNN)with the residual block is proposed,which can be used to generate accurate grasping detection for input images of the scene.The proposed model architecture was trained on the standard Cornell grasp dataset and evaluated on the test dataset.Moreover,it was evaluated on different types of household objects and cluttered multi-objects.On the Cornell grasp dataset,the accuracy of the model on image-wise splitting detection and object-wise splitting detection achieved 95.5%and 93.6%,respectively.Further,the real detection time per image was 109 ms.The experimental results show that the model can quickly detect the grasping positions of a single object or multiple objects in image pixels in real time,and it keeps good stability and robustness.展开更多
This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and ...This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.展开更多
GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection...GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR.展开更多
The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new dete...The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new detector is constant false alarm rate (CFAR) to both of the clutter covariance matrix structure and power level theoretically for match cases. The simulation results show that the new detector is almost CFAR for mismatch cases, and it outperforms the existing adaptive detector based on the sample covariance matrix. It also shows that the detection performance improves, as the number of pulses, the number of secondary data or the clutter spike increases. In addition, the derived detector is robust to different subsets, estimated clutter group sizes and correlations of clutter. Importantly, the number of iterations for practical application is just one.展开更多
Based on the target scatterer density, the range-spread target detection of high-resolution radar is addressed in additive non-Gaussian clutter, which is modeled as a spherically invariant random vector. Firstly, for ...Based on the target scatterer density, the range-spread target detection of high-resolution radar is addressed in additive non-Gaussian clutter, which is modeled as a spherically invariant random vector. Firstly, for sparse scatterer density, the detection of target scatterer in each range cell is derived, and then an M/K detector is proposed to detect the whole range-spread target. Se- condly, an integrating detector is devised to detect a range-spread target with dense scatterer density. Finally, to make the best of the advantages of M/K detector and integrating detector, a robust detector based on scatterer density (DBSD) is designed, which can reduce the probable collapsing loss or quantization error ef- fectively. Moreover, the density decision factor of DBSD is also determined. The formula of the false alarm probability is derived for DBSD. It is proved that the DBSD ensures a constant false alarm rate property. Furthermore, the computational results indi- cate that the DBSD is robust to different clutter one-lag correlations and target scatterer densities. It is also shown that the DBSD out- performs the existing scatterer-density-dependent detector.展开更多
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov ...The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.展开更多
文摘Perception and manipulation tasks for robotic manipulators involving highly-cluttered objects have become increasingly indemand for achieving a more efficient problem solving method in modern industrial environments.But,most of the available methods for performing such cluttered tasks failed in terms of performance,mainly due to inability to adapt to the change of the environment and the handled objects.Here,we propose a new,near real-time approach to suction-based grasp point estimation in a highly cluttered environment by employing an affordance-based approach.Compared to the state-of-the-art,our proposed method offers two distinctive contributions.First,we use a modified deep neural network backbone for the input of the semantic segmentation,to classify pixel elements of the input red,green,blue and depth(RGBD)channel image which is then used to produce an affordance map,a pixel-wise probability map representing the probability of a successful grasping action in those particular pixel regions.Later,we incorporate a high speed semantic segmentation to the system,which makes our solution have a lower computational time.This approach does not need to have any prior knowledge or models of the objects since it removes the step of pose estimation and object recognition entirely compared to most of the current approaches and uses an assumption to grasp first then recognize later,which makes it possible to have an object-agnostic property.The system was designed to be used for household objects,but it can be easily extended to any kind of objects provided that the right dataset is used for training the models.Experimental results show the benefit of our approach which achieves a precision of 88.83%,compared to the 83.4%precision of the current state-of-the-art.
基金supported by the National Natural Science Foundation of China(62171447)。
文摘In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments.
基金supported by the National Natural Science Foundation of China(62201251)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB510024)the Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University(XH-KY-202306-0291)。
文摘In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
基金supported in part by National Key R&D Program of China under Grant No.2021YFB2900200in part by National Natural Science Foundation of China under Grant Nos.U20B2039 and 62301032in part by China Postdoctoral Science Foundation under Grant No.2023TQ0028.
文摘Integrated sensing and communication(ISAC)is regarded as a pivotal technology for 6G communication.In this paper,we employ Kullback-Leibler divergence(KLD)as the unified performance metric for ISAC systems and investigate constellation and beamforming design in the presence of clutters.In particular,the constellation design problem is solved via the successive convex approximation(SCA)technique,and the optimal beamforming in terms of sensing KLD is proven to be equivalent to maximizing the signal-to-interference-plus-noise ratio(SINR)of echo signals.Numerical results demonstrate the tradeoff between sensing and communication performance under different parameter setups.Additionally,the beampattern generated by the proposed algorithm achieves significant clutter suppression and higher SINR of echo signals compared with the conventional scheme.
基金supported by the China Ministry of Industry and Information Technology Foundation and Aeronautical Science Foundation of China(ASFC-201920007002)the National Key Research and Development Plan(2021YFB1600603)the Open Fund of Key Laboratory of Civil Aircraft Airworthiness Technology,Civil Aviation University of China.
文摘Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes.
文摘Interference is a key factor in radar return misdetection.Strong interference might make it difficult to detect the signal or targets.When interference occurs in the sidelobes of the antenna pattern,Sidelobe Cancellation(SLC)and Sidelobe Blanking are two unique solutions to solve this problem(SLB).Aside from this approach,the probability of false alert and likelihood of detection are the most essential parameters in radar.The chance of a false alarm for any radar system should be minimal,and as a result,the probability of detection should be high.There are several interference cancellation strategies in the literature that are used to sustain consistent false alarms regardless of the clutter environment.With the necessity for interference cancellation methods and the constant false alarm rate(CFAR),the Maisel SLC algorithm has been modified to create a new algorithm for recognizing targets in the presence of severe interference.The received radar returns and interference are simulated as non-stationary in this approach,and side-lobe interference is cancelled using an adaptive algorithm.By comparing the performance of adaptive algorithms,simulation results are shown.In a severe clutter situation,the simulation results demonstrate a considerable increase in target recognition and signal to noise ratio when compared to the previous technique.
基金the National Natural Science Foundation of China(6187138461921001).
文摘The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.
文摘To address the problem that dynamic wind turbine clutter(WTC)significantly degrades the performance of weather radar,a WTC mitigation algorithm using morphological component analysis(MCA)with group sparsity is studied in this paper.The ground clutter is suppressed firstly to reduce the morphological compositions of radar echo.After that,the MCA algorithm is applied and the window used in the short-time Fourier transform(STFT)is optimized to lessen the spectrum leakage of WTC.Finally,the group sparsity structure of WTC in the STFT domain can be utilized to decrease the degrees of freedom in the solution,thus contributing to better estimation performance of weather signals.The effectiveness and feasibility of the proposed method are demonstrated by numerical simulations.
基金supported by the National Natural Science Foundation of China(62222120,61871391,U1933135)Shandong Provincial Natural Science Foundation(ZR2021YQ43).
文摘Long-time coherent integration(LTCI)is an effective way for radar maneuvering target detection,but it faces the problem of a large number of search parameters and large amount of calculation.Realizing the simultaneous compensation of the range and Doppler migrations in complex clutter back-ground,and at the same time improving the calculation efficiency has become an urgent problem to be solved.The sparse transformation theory is introduced to LTCI in this paper,and a non-parametric searching sparse LTCI(SLTCI)based maneuvering target detection method is proposed.This method performs time reversal(TR)and second-order Keystone transform(SKT)in the range frequency&slow-time data to complete high-order range walk compensation,and achieves the coherent integra-tion of maneuvering target across range and Doppler units via the robust sparse fractional Fourier transform(RSFRFT).It can compensate for the nonlinear range migration caused by high-order motion.S-band and X-band radar data measured in sea clutter background are used to verify the detection performance of the proposed method,which can achieve better detection performance of maneuvering targets with less computational burden compared with several popular integration methods.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
文摘The desire to speed up secondary storage systems has lead to the development of redundant arrays of independent disks (RAID) which incorporate redundancy utilizing erasure codes. A 'cluttered ordering' is utilized for designing an effective writing order to a RAID system. Cohen, Colboum and Froncek (2001) gave a cyclic construction of cluttered orderings for the complete graph by utilizing the notion of a 'wrapped p-labelling'. Since wrapped p-labellings as cluttered orderings for the complete graph look such as ladders, they are also called as ladder orderings. Cohen and Colboum (2004) gave a characteristic of ladder orderings. In this paper, we give an algorithm in order to generate ladder orderings.
文摘The design of large disk array architectures leads to interesting combinatorial problems. Minimizing the number of disk operations when writing to consecutive disks leads to the concept of “cluttered orderings” which were introduced for the complete graph by Cohen et al. (2001). Mueller et al. (2005) adapted the concept of wrapped Δ-labellings to the complete bipartite case. In this paper, we give some sequence in order to generate wrapped Δ-labellings as cluttered orderings for the complete bipartite graph. New sequence we give is different from the sequences Mueller et al. gave, though the same graphs in which these sequences are labeled.
基金National Natural Science Foundation of China(No.52101346)Fundamental Research Funds for the Central Universities,China(No.2232019D3-61)Initial Research Fund for the Young Teachers of Donghua University,China。
文摘Robotic grasps play an important role in the service and industrial fields,and the robotic arm can grasp the object properly depends on the accuracy of the grasping detection result.In order to predict grasping detection positions for known or unknown objects by a modular robotic system,a convolutional neural network(CNN)with the residual block is proposed,which can be used to generate accurate grasping detection for input images of the scene.The proposed model architecture was trained on the standard Cornell grasp dataset and evaluated on the test dataset.Moreover,it was evaluated on different types of household objects and cluttered multi-objects.On the Cornell grasp dataset,the accuracy of the model on image-wise splitting detection and object-wise splitting detection achieved 95.5%and 93.6%,respectively.Further,the real detection time per image was 109 ms.The experimental results show that the model can quickly detect the grasping positions of a single object or multiple objects in image pixels in real time,and it keeps good stability and robustness.
文摘This paper presents a new kernel-based algorithm for video object tracking called rebound of region of interest (RROI). The novel algorithm uses a rectangle-shaped section as region of interest (ROI) to represent and track specific objects in videos. The proposed algorithm is constituted by two stages. The first stage seeks to determine the direction of the object’s motion by analyzing the changing regions around the object being tracked between two consecutive frames. Once the direction of the object’s motion has been predicted, it is initialized an iterative process that seeks to minimize a function of dissimilarity in order to find the location of the object being tracked in the next frame. The main advantage of the proposed algorithm is that, unlike existing kernel-based methods, it is immune to highly cluttered conditions. The results obtained by the proposed algorithm show that the tracking process was successfully carried out for a set of color videos with different challenging conditions such as occlusion, illumination changes, cluttered conditions, and object scale changes.
基金This work was supported by U.S. Department of Defense Science Research Fund (Grant No. DAAD 19-03-1-0375) and the National Natural Science Foundation of China (Grant No. 40774055).
文摘GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR.
基金supported by Program for New Century Excellent Talents in University (05-0912)the National Natural Science Foundation of China (60672140)the Scientific Research Foundation of Naval Aeronautical and Astronautical University for Young Scholars(HYQN201013)
文摘The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new detector is constant false alarm rate (CFAR) to both of the clutter covariance matrix structure and power level theoretically for match cases. The simulation results show that the new detector is almost CFAR for mismatch cases, and it outperforms the existing adaptive detector based on the sample covariance matrix. It also shows that the detection performance improves, as the number of pulses, the number of secondary data or the clutter spike increases. In addition, the derived detector is robust to different subsets, estimated clutter group sizes and correlations of clutter. Importantly, the number of iterations for practical application is just one.
基金supported by the National Natural Science Foundation of China (61102166)the Scientific Research Foundation of Naval Aeronautical and Astronautical University for Young Scholars (HY2012)
文摘Based on the target scatterer density, the range-spread target detection of high-resolution radar is addressed in additive non-Gaussian clutter, which is modeled as a spherically invariant random vector. Firstly, for sparse scatterer density, the detection of target scatterer in each range cell is derived, and then an M/K detector is proposed to detect the whole range-spread target. Se- condly, an integrating detector is devised to detect a range-spread target with dense scatterer density. Finally, to make the best of the advantages of M/K detector and integrating detector, a robust detector based on scatterer density (DBSD) is designed, which can reduce the probable collapsing loss or quantization error ef- fectively. Moreover, the density decision factor of DBSD is also determined. The formula of the false alarm probability is derived for DBSD. It is proved that the DBSD ensures a constant false alarm rate property. Furthermore, the computational results indi- cate that the DBSD is robust to different clutter one-lag correlations and target scatterer densities. It is also shown that the DBSD out- performs the existing scatterer-density-dependent detector.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105013)the National Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011122)+1 种基金the Open Issue Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education,China (Grant No. KLME1109)the City Meteorological Scientific Research Fund,China (Grant No. IUMKY&UMRF201111)
文摘The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.