A longstanding open question of Connes asks whether any finite von Neumann algebra embeds into an ultraproduct of finite-dimensional matrix algebras.As of yet,algebras verified to satisfy the Connes's embedding pr...A longstanding open question of Connes asks whether any finite von Neumann algebra embeds into an ultraproduct of finite-dimensional matrix algebras.As of yet,algebras verified to satisfy the Connes's embedding property belong to just a few special classes (e.g.,amenable algebras and free group factors).In this article,we prove that von Neumann algebras satisfying Popa's co-amenability have Connes's embedding property.展开更多
文摘A longstanding open question of Connes asks whether any finite von Neumann algebra embeds into an ultraproduct of finite-dimensional matrix algebras.As of yet,algebras verified to satisfy the Connes's embedding property belong to just a few special classes (e.g.,amenable algebras and free group factors).In this article,we prove that von Neumann algebras satisfying Popa's co-amenability have Connes's embedding property.