期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Time-space characteristics of viscoelastic post-seismic deformations corresponding to different rheology models
1
作者 He Tang Wenke Sun 《Earthquake Science》 2021年第2期148-160,共13页
On a long time(>1 a)scale,the viscoelastic properties of mantle media significantly affect post-seismic deformation.The stress field disturbance in viscoelastic medium caused by fault slip gradually relax,and the r... On a long time(>1 a)scale,the viscoelastic properties of mantle media significantly affect post-seismic deformation.The stress field disturbance in viscoelastic medium caused by fault slip gradually relax,and the relaxation process and its temporal-spatial characteristics are determined by the viscoelastic model.In this paper,we assume that the mantle media are types of common linear rheological models,i.e.,the Burgers body,the standard linear solid,and the Maxell body,and we calculate the dislocation Love number and Green function for a spherically symmetric,non-rotating,viscoelastic,and isotropic(SNRVEI)Earth model.The characteristics of the post-seismic relaxation deformations corresponding to the different models are compared.Our results show that for a short time period,the Burgers body and standard linear solid are similar;while for the long time period,the Burgers body and Maxwell body are similar.This suggests that the observations of post-seismic deformation on the surface have a great potential for the inversion of underground viscoelastic structures.However,the potential of using surface displacement to distinguish different rheological models is limited when the observation period is not long enough. 展开更多
关键词 post-seismic deformation dislocation Love numbers viscoelasticity.
下载PDF
Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data 被引量:15
2
作者 Shuai Wang Chuang Song +1 位作者 ShanShan Li Xing Li 《Earth and Planetary Physics》 CSCD 2022年第1期108-122,共15页
On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since... On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps. 展开更多
关键词 Madoi earthquake Bayan Har block synthetic aperture radar data co-and post-seismic slip block-wide distributed deformation seismic risk
下载PDF
Numerical simulation of influences of the earth medium's lateral heterogeneity on co- and post-seismic deformation 被引量:3
3
作者 Xu Bei Xu Caijun 《Geodesy and Geodynamics》 2015年第1期46-54,共9页
Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method ar... Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field. 展开更多
关键词 Finite element method Medium s lateral heterogeneity Numerical simulation Co-seismic deformation post-seismic deformation Geod
下载PDF
Post-seismic relaxation process and vertical deformation following the 2008 Ms8.0 Wenchuan earthquake, China
4
作者 Hao Ming Wang Qingliang Cui Duxin 《Geodesy and Geodynamics》 2012年第4期23-27,共5页
The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from... The post-seismic horizontal and vertical deformations following the 2008 Ms8.0 Wenchuan earth- quake are inferred from GPS and precise leveling data. The post-seismic relaxation process is measured using GPS data from campaign stations located around the Longmenshan fault, and the derived decay time constant is 12 days. The evolution of the post-seismic vertical deformation is obtained from precise leveling data measured near the surface rupture. The results demonstrate that the hanging wall is uplifting and the foot wall is subsi- ding. The amplitude of the post-seismic deformation is lower than that of the co-seismic deformation. The re- gion with the largest post-seismic displacement is located on the leveling route between Maoxian and Beichuan on the hanging wall. 展开更多
关键词 post-seismic deformation relaxation process the Wenchuan earthquake LEVELING
下载PDF
Co- and post-seismic slip analysis of the 2017 M_(W)7.3 Sarpol Zahab earthquake using Sentinel-1 data 被引量:1
5
作者 Lejun Lu Yu Zhou 《Geodesy and Geodynamics》 CSCD 2022年第2期151-159,共9页
The M_(w)7.3 Sarpol Zahab earthquake that occurred in the Zagros Fold-Thrust Belt(ZFTB) of Iran on November 12,2017 is the largest earthquake instrumentally recorded in the region.This earthquake provides an opportuni... The M_(w)7.3 Sarpol Zahab earthquake that occurred in the Zagros Fold-Thrust Belt(ZFTB) of Iran on November 12,2017 is the largest earthquake instrumentally recorded in the region.This earthquake provides an opportunity to investigate the slip behaviour and frictional properties of the fault,which is significant for assessing future seismic potential.In this study,we use Sentinel-1 images to map the coand post-seismic deformation to invert for the fault slip.The result indicates that most of the coseismic slip is buried in the depth range of 11-17 km,and the maximum slip is about 3.8 m at a depth of 15 km.The coseismic slip induces an increase of Coulomb stress in the unruptured area of the seismogenic fault plane,driving the afterslip.Based on the stress-driven afterslip,we obtain a frictional parameter of(ab)=(0.001-0.002) for the updip afterslip zone and(a-b)=0.0002 for the downdip afterslip zone in the framework of rate-and-state friction.The constitutive parameter(a-b) of the fault is very small,suggesting that the fault segments are close to velocity-neutral and may experience coseismic rupture. 展开更多
关键词 2017 M_(W)7.3 Sarpol Zahab earthquake Sentinel-1 co-and post-seismic deformation Fault frictional properties
下载PDF
Studying the viscosity of lower crust of Qinghai-Tibet Plateau according to post-seismic deformation 被引量:9
6
作者 ZHANG ChaoJun CAO JianLing SHI YaoLin 《Science China Earth Sciences》 SCIE EI CAS 2009年第3期411-419,共9页
The viscosity of lower crust of Qinghai-Tibet Plateau on earth should be determined. It has become a predominant problem in quantitative research on geodynamics. Its order of magnitude will have a great influence on t... The viscosity of lower crust of Qinghai-Tibet Plateau on earth should be determined. It has become a predominant problem in quantitative research on geodynamics. Its order of magnitude will have a great influence on the results of quantitative modeling. To obtain the viscosity of lower crust of Qinghai-Tibet Plateau, this parameter was calculated by three methods. The first is based on the estimation on the temperature state of Qinghai-Tibet Plateau in the deep part, and the viscosity of lower crust of northern Plateau was recomputed with strain rate derived from rheology law and GPS observation. Effective viscosity of middle crust in Kunlun region is between 1020 and 1022 Pa·s, and that of lower crust is be- tween 1019 and 1021 Pa·s; the second is based on three kinds of rheological models used to fit the post-seismic deformation recorded by cross-over fault GPS sites set after Ms8.1 Kunlun earthquake in 2001. The viscosity of lower crust obtained by this method is of 1017 Pa·s order of magnitude. However, higher viscosity is required to fit the data of south fault better, and the lower one is required to fit the data of north fault better. The viscosity of lower crust, which was obtained by fitting the cross-over fault post-seismic deformation after Ms7.6 Luhuo earthquake in 1973, is of 1019 Pa·s order of magnitude. Non-linear relationship between effective viscosity and strain rate is ignored in the former research of effective viscosity. This research shows the difference of effective viscosity obtained from laboratory experiment, and shorter and longer time post-seismic deformation after large earthquakes can be explained in phase. 展开更多
关键词 RHEOLOGICAL model strain rate RHEOLOGICAL LAW post-seismic deformation VISCOSITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部