Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions betw...Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.展开更多
Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5...Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.展开更多
An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(A...An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.展开更多
Measurements of the Doppler broadening S-lineshape parameter of positron annihilation and brittleness have been performed for two Co-based amorphous alloy prior to crystallization. It is shown that the brittleness is ...Measurements of the Doppler broadening S-lineshape parameter of positron annihilation and brittleness have been performed for two Co-based amorphous alloy prior to crystallization. It is shown that the brittleness is related to the S-parameter, that is, microdefects may be one of the important factors affecting the embrittlement of the Co-based amorphous alloys.展开更多
The structure of the yttrium modified Co-base alloy layers formed by laser cladding on 2Cr13 and 1Cr18Ni9Ti steel surfaces and its hot corrosion performance have been investigated systematically.The re- sults show tha...The structure of the yttrium modified Co-base alloy layers formed by laser cladding on 2Cr13 and 1Cr18Ni9Ti steel surfaces and its hot corrosion performance have been investigated systematically.The re- sults show that the Y-containing cobalt base clad alloy has a finer microstructure and higher corrosion re- sistance to the salt mixture of 75% Na_2SO_4+25%NaCl at high temperature.The unique properties are ob- tained with addition of 0.875% Y for the formation of a continuous and compact oxide scale.The compact scale may act as a barrier for the inward diffusion of oxygen and sulphur and also for the outward diffusion of alloying elements.展开更多
A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual st...A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress.Through the first 50 times of thermal cycling,the morphology of coating still inherits the laser casting one,but the dendrites get bigger;After the second 50 times of thermal cycling,corrosion pits emerge from coating,and mostly in the places where coating and substrate meet.The fatigue damage type of coating belongs to stress corrosion.展开更多
The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning elec...The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning electron microscopy ( SEM) and X-ray diffraction ( XRD ). The results show that the coatings and substrates combine well. The main phase compositions of laser cladding coating are T-Co, Cr23 C6 and Ni2 9 Cro. 7 Feo. 36, while vacuum fusion sintering coating consists of Co, Cr7 C3, and Ni2.9 Cro. 7 Feo. 36. After thermal cycling, the minimum hot cracking width of laser cladding coating is 14 μm; moreover, laser cladding coating maintains high hardness and hot-cracking susceptibility. Those are beneficial to high temperature wear resistance of hot work dies.展开更多
Fe-based and Co-based cladding layers were prepared on the surface of AISI H13 hot die steel by laser cladding technology.The microstructure,hardness and abrasion resistance of the two cladding layers were studied by ...Fe-based and Co-based cladding layers were prepared on the surface of AISI H13 hot die steel by laser cladding technology.The microstructure,hardness and abrasion resistance of the two cladding layers were studied by means of optical microscope,scanning electron microscope,rockwell hardness tester,and high temperature friction and wear tester.Also,the red hardness of the cladding layers was measured,after holding the layers at 600℃ for 1 hour by muffle furnace and repeated 4 times.The rockwell hardness values of the substrate,the Fe-based and the Co-based alloy coating measured were HRC 47,HRC 52 and HRC 48,respectively.The red hardness values of the substrate and the Fe-based cladding layer were decreased,while that of the Co-based cladding layer was increased.The Co-based cladding layer has the minimal wear loss weight and friction coefficient among them.The wear mechanisms of the substrate,the Fe-based layer and the Cobased layer attribute mainly to abrasive wear,adhesion wear,and both of them,respectively.展开更多
Developing a universal and reliable strategy for the modulation of composition and structure of energy storage materials with stable cycling performance is vital for hydrogen and its isotopes storage advanced system,y...Developing a universal and reliable strategy for the modulation of composition and structure of energy storage materials with stable cycling performance is vital for hydrogen and its isotopes storage advanced system,yet still challenging.Herein,an ultra-stable lattice structure is designed and verified to increase atomic chaos and interference for effectively inhibiting disproportionation reaction and improving cycling stability in ZrCo-based hydrogen isotopes storage alloy.After screening in terms of configuration entropy calculation,we construct Zr_(1-2)Nb_(x)Co_(1-2x)Cu_(x)Ni_(x)(x=0.15,0.2,0.25) alloys with increased atomic chaos,and successfully achieve stable isostructural de-/hydrogenation during 100 cycles,whose cycling capacity retentions are above 99%,much higher than 22.4%of pristine ZrCo alloy.Both theoretical analysis and experimental evidences indicate the high thermo-stability of orthorhombic lattice in Zr_(0.8)Nb_(0.2)Co_(0.6)Cu_(0.2)Ni_(0.2) alloy.Notably,the increased atomic chaos and interference in Zr_(0.8)Nb_(0.2)Co_(0.6)Cu_(0.2)Ni_(0.2) alloy causes regulation in hydrogen local chemical neighborhood,thereby confusing the hydrogen release order,which effectively eliminates lattice distortion and unlocks an ultrastable lattice structure.This study provides a new and comprehensive inspiration for hydrogen atoms transport behaviors and intrinsic reason of stable orthorhombic transformation,which can contribute to paving the way for other energy storage materials modulation.展开更多
Co68.15Fe4.35Si12.25B15.25 (at%) amorphous microwires with a smooth surface and a circular cross-section were fabricated by the glass-coated melt spinning method. Their mechanical properties were evaluated through t...Co68.15Fe4.35Si12.25B15.25 (at%) amorphous microwires with a smooth surface and a circular cross-section were fabricated by the glass-coated melt spinning method. Their mechanical properties were evaluated through tensile tests of the glass-coated amorphous mi-crowires, and their fracture reliability was estimated using two-and three-parameter Weibull analysis. X-ray diffraction and transmission electron microscopy results showed that these glass-coated Co-based microwires were mostly amorphous. The coated Co-based microwires exhibit a tensile strength of 1145 to 2457 MPa, with a mean value of 1727 MPa and a variance of 445 MPa. Weibull statistical analysis showed that the tensile two-parameter Weibull modulus of the amorphous microwires is 4.16 and the three-parameter Weibull modulus is 1.61 with a threshold value as high as 942 MPa. These results indicate that the fabricated microwires exhibit good tensile properties and fracture reliability, and thus appear to be good candidates for electronics reliability engineering applications.展开更多
Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-pre...The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.展开更多
Co-based superalloys such as FSX-414 have been recently used in gas turbine first stage nozzles. During service, nozzles are exposed to low cycle fatigue, which can lead to cracking of these components. The cracks on ...Co-based superalloys such as FSX-414 have been recently used in gas turbine first stage nozzles. During service, nozzles are exposed to low cycle fatigue, which can lead to cracking of these components. The cracks on these nozzles are usually welded with ttmgsten arc welding (TIG) using Co-based filler metals. In this paper, the effect of TIG on the tensile and low cycle fatigue properties of Co-based superalloy FSX-414 was studied at 950℃. The experimental results show that the yield and ultimate tensile stresses of welded and unwelded specimens are comparable to each other. But toughness of welded specimens is lower than that of unwelded ones. The low cycle fatigue properties of FSX-414 were studied at a strain rate of 3.3×10^-4 s^-1, strain ratio R=-1 (R=emin/emax) and Aet (total strain change) from 0.8% to 2%. In welded specimens, at high strain cycling, the nucleation and growth of cracks occur in the welded zone. But at Aet=0.8%, fracture occurs in the same zones of unwelded specimens. The results show that the total fatigue lives of the welded specimens are shorter than those of unwelded ones. In all of the low cycle fatigue tests, softening phenomena are observed.展开更多
Layered Co-based ceramics with a nominal composition Bi2-xLaxSr2Co2O8-δ (x=0.0, 0.4, 0.8, short by BLC-222) were prepared using conventional solid state reaction method. X-ray photoemission spectroscopy (XPS) was use...Layered Co-based ceramics with a nominal composition Bi2-xLaxSr2Co2O8-δ (x=0.0, 0.4, 0.8, short by BLC-222) were prepared using conventional solid state reaction method. X-ray photoemission spectroscopy (XPS) was used to investigate their electronic structures. The cobalt ions are highly mixed valences of Co3+ and Co4+. The fraction of Co4+ almost keeps unchanged with the increase of x. The O-1s photoemission spectra show that there are lattice oxygen and chemical absorbed oxygen in all the samples. The substitution of Bi3+ by La3+ results in a change from metallic-like behavior to semiconductor behavior. This abnormal phenomenon means that La3+ plays a key role in effecting the electrical transport property of BLC-222. The O-Co covalence bond is strengthened by the increase of La3+, which results in the decrease of conductivity.展开更多
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ...This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.展开更多
Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized an...Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized and structurally characterized.ZTU-3 features a triangular core geometry,while ZTU-4 exhibits a cuboidal core geometry.In addition,the magnetic properties of ZTU-3 and ZTU-4 are also all investigated.展开更多
In order to check the traditional core loss formula, the core loss spectrum P(f) of Co-based amorphous soft magnetic alloy with constant permeability has been studied. It is found that within a high frequency range fr...In order to check the traditional core loss formula, the core loss spectrum P(f) of Co-based amorphous soft magnetic alloy with constant permeability has been studied. It is found that within a high frequency range from 10 kHz to 200 kHz and at Bm = 0. 1 T,the P(f) has the fractal structure P (f) = Po, and with the increasing of induced anisotropy energy Ku, the fractal dimension Dfrises, thus the total power loss at high frequency increases and the frequency characteristic of P(f) becomes worse.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12072317)the Natural Science Foundation of Zhejiang Province(Grant No.LZ21A020002)+2 种基金Ligang Sun gratefully acknowledges the support received from the Guangdong Basic and Applied Basic Research Foundation(Grant No.22022A1515011402)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.GXWD20231130102735001)Development and Reform Commission of Shenzhen(Grant No.XMHT20220103004).
文摘Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.
基金the Swedish Foundation for International Cooperation in Research and Higher Education(STINT,Nos.IB2020-8781 and IB20229228)for the collaboration between KTH<U(Sweden),HYU(Korea),and NEU(China)VINNOVA(No.2022-01216),the SSF Strategic Mobility Grant(No.SM22-0039),the?Forsk(No.23-540),and the Swedish Steel Producers’Association(Jernkontoret),in particular,Axel Ax:-son Johnsons forskningsfond,Prytziska fondennr 2,Gerhard von Hofstens Stiftelse f?r Metallurgisk forskning,and Stiftelsen?veringenj?ren Gustaf Janssons Jernkontorsfond for the financial support.Key Lab of EPM(NEU)is acknowledged for supporting the partial FactSage calculation+2 种基金the Key Laboratory for Ferrous Metallurgy and Resources Utilization of the Min-istry of Education and Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steelmaking(No.FMRUlab-22-1)for supporting this researchThe Natural Science Foundation of Liaoning Province,China(No.2023MSBA-135)the Fundamental Research Funds for the Central Universities(No.N2409006)are also acknowledged。
文摘Specific grades of high-entropy alloys(HEAs)can provide opportunities for optimizing properties toward high-temperature applications.In this work,the Co-based HEA with a chemical composition of Co_(47.5)Cr_(30)Fe_(7.5)Mn_(7.5)Ni_(7.5)(at%)was chosen.The refractory metallic elements hafnium(Hf)and molybdenum(Mo)were added in small amounts(1.5at%)because of their well-known positive effects on high-temperature properties.Inclusion characteristics were comprehensively explored by using a two-dimensional cross-sectional method and extracted by using a three-dimensional electrolytic extraction method.The results revealed that the addition of Hf can reduce Al_(2)O_(3)inclusions and lead to the formation of more stable Hf-rich inclusions as the main phase.Mo addition cannot influence the inclusion type but could influence the inclusion characteristics by affecting the physical parameters of the HEA melt.The calculated coagulation coefficient and collision rate of Al_(2)O_(3)inclusions were higher than those of HfO_(2)inclusions,but the inclusion amount played a larger role in the agglomeration behavior of HfO_(2)and Al_(2)O_(3)inclusions.The impurity level and active elements in HEAs were the crucial factors affecting inclusion formation.
文摘An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.
文摘Measurements of the Doppler broadening S-lineshape parameter of positron annihilation and brittleness have been performed for two Co-based amorphous alloy prior to crystallization. It is shown that the brittleness is related to the S-parameter, that is, microdefects may be one of the important factors affecting the embrittlement of the Co-based amorphous alloys.
基金Research Project supported by the Corrosion Science Laboratory,Academia Sinica
文摘The structure of the yttrium modified Co-base alloy layers formed by laser cladding on 2Cr13 and 1Cr18Ni9Ti steel surfaces and its hot corrosion performance have been investigated systematically.The re- sults show that the Y-containing cobalt base clad alloy has a finer microstructure and higher corrosion re- sistance to the salt mixture of 75% Na_2SO_4+25%NaCl at high temperature.The unique properties are ob- tained with addition of 0.875% Y for the formation of a continuous and compact oxide scale.The compact scale may act as a barrier for the inward diffusion of oxygen and sulphur and also for the outward diffusion of alloying elements.
基金Project Sponsored by Committee on Science and Technology of Guizhou Province(943068)
文摘A thermal fatigue behaviour of Co-based alloy coating obtained by laser surface meltcasting on the high temperature alloy GH33 was studied.The results show that after each time of thermal cycling,the final residual stress was formed in the melt-casting layer which is attributed to the thermal stress and structural stress.Through the first 50 times of thermal cycling,the morphology of coating still inherits the laser casting one,but the dendrites get bigger;After the second 50 times of thermal cycling,corrosion pits emerge from coating,and mostly in the places where coating and substrate meet.The fatigue damage type of coating belongs to stress corrosion.
文摘The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning electron microscopy ( SEM) and X-ray diffraction ( XRD ). The results show that the coatings and substrates combine well. The main phase compositions of laser cladding coating are T-Co, Cr23 C6 and Ni2 9 Cro. 7 Feo. 36, while vacuum fusion sintering coating consists of Co, Cr7 C3, and Ni2.9 Cro. 7 Feo. 36. After thermal cycling, the minimum hot cracking width of laser cladding coating is 14 μm; moreover, laser cladding coating maintains high hardness and hot-cracking susceptibility. Those are beneficial to high temperature wear resistance of hot work dies.
文摘Fe-based and Co-based cladding layers were prepared on the surface of AISI H13 hot die steel by laser cladding technology.The microstructure,hardness and abrasion resistance of the two cladding layers were studied by means of optical microscope,scanning electron microscope,rockwell hardness tester,and high temperature friction and wear tester.Also,the red hardness of the cladding layers was measured,after holding the layers at 600℃ for 1 hour by muffle furnace and repeated 4 times.The rockwell hardness values of the substrate,the Fe-based and the Co-based alloy coating measured were HRC 47,HRC 52 and HRC 48,respectively.The red hardness values of the substrate and the Fe-based cladding layer were decreased,while that of the Co-based cladding layer was increased.The Co-based cladding layer has the minimal wear loss weight and friction coefficient among them.The wear mechanisms of the substrate,the Fe-based layer and the Cobased layer attribute mainly to abrasive wear,adhesion wear,and both of them,respectively.
基金financial supports from the National Natural Science Foundation of China (52071286, U2030208 and 51901213)the National Key Research and Development Program of China (2017YFE0301505)。
文摘Developing a universal and reliable strategy for the modulation of composition and structure of energy storage materials with stable cycling performance is vital for hydrogen and its isotopes storage advanced system,yet still challenging.Herein,an ultra-stable lattice structure is designed and verified to increase atomic chaos and interference for effectively inhibiting disproportionation reaction and improving cycling stability in ZrCo-based hydrogen isotopes storage alloy.After screening in terms of configuration entropy calculation,we construct Zr_(1-2)Nb_(x)Co_(1-2x)Cu_(x)Ni_(x)(x=0.15,0.2,0.25) alloys with increased atomic chaos,and successfully achieve stable isostructural de-/hydrogenation during 100 cycles,whose cycling capacity retentions are above 99%,much higher than 22.4%of pristine ZrCo alloy.Both theoretical analysis and experimental evidences indicate the high thermo-stability of orthorhombic lattice in Zr_(0.8)Nb_(0.2)Co_(0.6)Cu_(0.2)Ni_(0.2) alloy.Notably,the increased atomic chaos and interference in Zr_(0.8)Nb_(0.2)Co_(0.6)Cu_(0.2)Ni_(0.2) alloy causes regulation in hydrogen local chemical neighborhood,thereby confusing the hydrogen release order,which effectively eliminates lattice distortion and unlocks an ultrastable lattice structure.This study provides a new and comprehensive inspiration for hydrogen atoms transport behaviors and intrinsic reason of stable orthorhombic transformation,which can contribute to paving the way for other energy storage materials modulation.
基金financially supported by the National Natural Science Foundation of China(No.51371067)supported by the Japan Society for the Promotion of Science(JSPS) fellowship and Grants-in-Aid for Scientific Research(No.25-03205)
文摘Co68.15Fe4.35Si12.25B15.25 (at%) amorphous microwires with a smooth surface and a circular cross-section were fabricated by the glass-coated melt spinning method. Their mechanical properties were evaluated through tensile tests of the glass-coated amorphous mi-crowires, and their fracture reliability was estimated using two-and three-parameter Weibull analysis. X-ray diffraction and transmission electron microscopy results showed that these glass-coated Co-based microwires were mostly amorphous. The coated Co-based microwires exhibit a tensile strength of 1145 to 2457 MPa, with a mean value of 1727 MPa and a variance of 445 MPa. Weibull statistical analysis showed that the tensile two-parameter Weibull modulus of the amorphous microwires is 4.16 and the three-parameter Weibull modulus is 1.61 with a threshold value as high as 942 MPa. These results indicate that the fabricated microwires exhibit good tensile properties and fracture reliability, and thus appear to be good candidates for electronics reliability engineering applications.
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.
文摘The magnetic properties and anisotropy of amor- phous(Fe_(80)Ni_(20))_(78)Si_xB_(22-x).alloys have been investigated systematically.The maximum permeability,coercive force and remanence have been determined for as-prepared and annealed samples,The results on the technical magnetic properties of this alloy system have been discussed and compared with Masumoto's.
文摘Co-based superalloys such as FSX-414 have been recently used in gas turbine first stage nozzles. During service, nozzles are exposed to low cycle fatigue, which can lead to cracking of these components. The cracks on these nozzles are usually welded with ttmgsten arc welding (TIG) using Co-based filler metals. In this paper, the effect of TIG on the tensile and low cycle fatigue properties of Co-based superalloy FSX-414 was studied at 950℃. The experimental results show that the yield and ultimate tensile stresses of welded and unwelded specimens are comparable to each other. But toughness of welded specimens is lower than that of unwelded ones. The low cycle fatigue properties of FSX-414 were studied at a strain rate of 3.3×10^-4 s^-1, strain ratio R=-1 (R=emin/emax) and Aet (total strain change) from 0.8% to 2%. In welded specimens, at high strain cycling, the nucleation and growth of cracks occur in the welded zone. But at Aet=0.8%, fracture occurs in the same zones of unwelded specimens. The results show that the total fatigue lives of the welded specimens are shorter than those of unwelded ones. In all of the low cycle fatigue tests, softening phenomena are observed.
基金the National Nature Science Foundation of China (20571019)the Project-sponsored by SRF for ROCS ,HLJ (LC06C13)+1 种基金Project-Sponsored by Program of Harbin Subject Chief Scientist (2006RFXXG001)Development Programfor Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2006.028)
文摘Layered Co-based ceramics with a nominal composition Bi2-xLaxSr2Co2O8-δ (x=0.0, 0.4, 0.8, short by BLC-222) were prepared using conventional solid state reaction method. X-ray photoemission spectroscopy (XPS) was used to investigate their electronic structures. The cobalt ions are highly mixed valences of Co3+ and Co4+. The fraction of Co4+ almost keeps unchanged with the increase of x. The O-1s photoemission spectra show that there are lattice oxygen and chemical absorbed oxygen in all the samples. The substitution of Bi3+ by La3+ results in a change from metallic-like behavior to semiconductor behavior. This abnormal phenomenon means that La3+ plays a key role in effecting the electrical transport property of BLC-222. The O-Co covalence bond is strengthened by the increase of La3+, which results in the decrease of conductivity.
基金funded by the National Natural Science Foundation of China(Nos.51801189)The Central Guidance on Local Science and Technology Development Fund of Shanxi Province(Nos.YDZJTSX2021A027)+2 种基金The National Natural Science Foundation of China(Nos.51801189)The Science and Technology Major Project of Shanxi Province(No.20191102008,20191102007)The North University of China Youth Academic Leader Project(No.11045505).
文摘This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys.
基金Supported by the National Natural Science Foundation of China(21861044 and 21601137)the Project funded by China Postdoctoral Science Foundation(2018M633426)the Project funded by Yunnan Province Postdoctoral Science Foundation
文摘Two novel Co-based clusters with the 2-(hydroxylmethyl)pyridine(hmpH)ligand,formulated as[Co3(hmp)6(hmpH)]×2NO3×3H2O(ZTU-3)and[Co4(hmp)4(CH3CO2)2(H2O)4]×2NO3(ZTU-4),have been successfully synthesized and structurally characterized.ZTU-3 features a triangular core geometry,while ZTU-4 exhibits a cuboidal core geometry.In addition,the magnetic properties of ZTU-3 and ZTU-4 are also all investigated.
文摘In order to check the traditional core loss formula, the core loss spectrum P(f) of Co-based amorphous soft magnetic alloy with constant permeability has been studied. It is found that within a high frequency range from 10 kHz to 200 kHz and at Bm = 0. 1 T,the P(f) has the fractal structure P (f) = Po, and with the increasing of induced anisotropy energy Ku, the fractal dimension Dfrises, thus the total power loss at high frequency increases and the frequency characteristic of P(f) becomes worse.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.