期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Fast Multi-tasking Solution: NMF-Theoretic Co-clustering for Gear Fault Diagnosis under Variable Working Conditions 被引量:6
1
作者 Fei Shen Chao Chen +1 位作者 Jiawen Xu Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期182-196,共15页
Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strat... Most gear fault diagnosis(GFD)approaches su er from ine ciency when facing with multiple varying working conditions at the same time.In this paper,a non-negative matrix factorization(NMF)-theoretic co-clustering strategy is proposed specially to classify more than one task at the same time using the high dimension matrix,aiming to o er a fast multi-tasking solution.The short-time Fourier transform(STFT)is first used to obtain the time-frequency features from the gear vibration signal.Then,the optimal clustering numbers are estimated using the Bayesian information criterion(BIC)theory,which possesses the simultaneous assessment capability,compared with traditional validity indexes.Subsequently,the classical/modified NMF-based co-clustering methods are carried out to obtain the classification results in both row and column tasks.Finally,the parameters involved in BIC and NMF algorithms are determined using the gradient ascent(GA)strategy in order to achieve reliable diagnostic results.The Spectra Quest’s Drivetrain Dynamics Simulator gear data sets were analyzed to verify the e ectiveness of the proposed approach. 展开更多
关键词 GEAR fault diagnosis Non-negative matrix FACTORIZATION co-clustering VARYING working conditions
下载PDF
A Visualization Study of Hot Spots of Research on Siraitiae Fructus over a Decade Based on Co-clustering Analysis
2
作者 Jianhua FAN Min LIANG Buming LIU 《Medicinal Plant》 CAS 2018年第1期1-5,15,共6页
[Objectives] To use co-clustering analysis and visualization method to analyze the research on Siraitiae Fructus in recent ten years,to know the hot spots and trend of research. [Methods] Relevant research results abo... [Objectives] To use co-clustering analysis and visualization method to analyze the research on Siraitiae Fructus in recent ten years,to know the hot spots and trend of research. [Methods] Relevant research results about S. Fructus in CNKI from January of 2007 to December of 2016 were retrieved by computers,and the retrieval time was February 20,2017. BICOMB,Net Draw,g CLUTO and SPSS19. 0 software were used to conduct co-clustering analysis and visualization analysis for included articles. Keywords were analyzed,and social network graph,visualization matrix,peak image and multidimensional scaling analysis map were drawn. Correlation among high-frequency key words were analyzed. [Results] Totally 723 articles were included,among which 70 articles were issued during 2012-2016; 76 key words were obtained by key word co-occurrence network map,among which mogroside,MOG,extraction process,tissue culture,cultivation technology,varieties,growth and development were in the core position; visualization and the peak image showed that the topics in this research field could be divided into 6 categories; research hotspot dynamic evolution showed that S. Fructus flower,beverage,total flavonoids,gene expression,gene cloning,enzyme,apoptosis,and S. Fructus seed oil would be the hot spots of further study. [Conclusions]This study reveals that the research on S. Fructus in the recent ten years is becoming mature,and expanding to deep level. This study can be promoted to discipline development evaluation of TCM research field. 展开更多
关键词 Siraitiae Fructus co-clustering analysis VISUALIZATION BICOMB gCLUTO UCINET SPSS Data mining
下载PDF
TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection
3
作者 Isha Sood Varsha Sharm 《Computers, Materials & Continua》 SCIE EI 2024年第11期2791-2818,共28页
Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations ... Ransomware has emerged as a critical cybersecurity threat,characterized by its ability to encrypt user data or lock devices,demanding ransom for their release.Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases,rendering them less effective against evolving ransomware families.This paper introduces TLERAD(Transfer Learning for Enhanced Ransomware Attack Detection),a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains,enabling robust detection of both known and unknown ransomware variants.The proposed method achieves high detection accuracy,with an AUC of 0.98 for known ransomware and 0.93 for unknown ransomware,significantly outperforming baseline methods.Comprehensive experiments demonstrate TLERAD’s effectiveness in real-world scenarios,highlighting its adapt-ability to the rapidly evolving ransomware landscape.The paper also discusses future directions for enhancing TLERAD,including real-time adaptation,integration with lightweight and post-quantum cryptography,and the incorporation of explainable AI techniques. 展开更多
关键词 Ransomware detection transfer learning unsupervised learning co-clustering CYBERSECURITY machine learning lightweight cryptography post-quantum cryptography explainable AI TLERAD
下载PDF
一种改进的解相关LMS自适应算法 被引量:14
4
作者 段正华 王梓展 鲁薇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期114-118,共5页
针对变步长LMS自适应滤波算法在输入信号高度相关时,收敛速度下降导致性能下降的问题,提出了一种改进的解相关LMS自适应算法,该算法引入解相关原理和归一化处理,用输入向量的正交分量来更新滤波器权系数,有效加快了算法的收敛速度,且稳... 针对变步长LMS自适应滤波算法在输入信号高度相关时,收敛速度下降导致性能下降的问题,提出了一种改进的解相关LMS自适应算法,该算法引入解相关原理和归一化处理,用输入向量的正交分量来更新滤波器权系数,有效加快了算法的收敛速度,且稳态误差小,使得算法在有色输入和大范围的动态输入下都能保持良好性能. 展开更多
关键词 自适应算法 归一化 变步长 LMS(least mean square)
下载PDF
非线性系统中多传感器目标跟踪融合算法研究 被引量:6
5
作者 杨春玲 刘国岁 余英林 《航空学报》 EI CAS CSCD 北大核心 2000年第6期512-515,共4页
研究了在非线性系统中 ,基于转换坐标卡尔曼滤波器的多传感器目标跟踪融合算法。通过分析得出 :在非线性系统的多传感器目标跟踪中 ,基于转换坐标卡尔曼滤波器 ( CMKF)的分布融合估计基本可以重构中心融合估计。仿真实验也证明了此结论... 研究了在非线性系统中 ,基于转换坐标卡尔曼滤波器的多传感器目标跟踪融合算法。通过分析得出 :在非线性系统的多传感器目标跟踪中 ,基于转换坐标卡尔曼滤波器 ( CMKF)的分布融合估计基本可以重构中心融合估计。仿真实验也证明了此结论。由此可见分布的 展开更多
关键词 目标跟踪 数据融合 中心融合算法 分布融合算法
下载PDF
一种结合紧致性与分离性的模糊联合聚类算法 被引量:1
6
作者 刘永利 段天毅 杨立身 《河南理工大学学报(自然科学版)》 CAS 北大核心 2017年第5期85-88,94,共5页
为了同时对数据对象和特征进行聚类分析以提高聚类准确率,在模糊紧致性和分离性算法(fuzzy compactness and separation,FCS)基础上,提出一种结合类内紧致性和类间分离性的模糊联合聚类算法(fuzzy compactness and separation co-cluste... 为了同时对数据对象和特征进行聚类分析以提高聚类准确率,在模糊紧致性和分离性算法(fuzzy compactness and separation,FCS)基础上,提出一种结合类内紧致性和类间分离性的模糊联合聚类算法(fuzzy compactness and separation co-clustering,FCSCC)。该算法在FCS的基础上增加了对特征维度的隶属度关系与熵最大化原理,能够在数据对象和特征2个维度上同时聚类。为验证该算法的有效性,另选择了3种算法在5个数据集上进行了对比实验,结果表明,FCSCC算法的聚类准确率高于其他3种算法。 展开更多
关键词 模糊联合聚类算法 紧致性 分离性
下载PDF
一种变形的T—型方程的快速求解算法
7
作者 孙学峰 《计算技术与自动化》 2003年第4期44-46,58,共4页
本文提出了变形T—型方程组的一种快速算法,所需乘、加运算量为O(N2),比已有的常见解法(如高斯消去法)运算量少了一个数量级,其中N表示方程组的阶。
关键词 T-型方程 快速求解算法 数字信号处理 信号分析
下载PDF
城市物流中多目标配送模型 被引量:7
8
作者 廖洁君 陈燕 《大连海事大学学报》 CAS CSCD 北大核心 2004年第4期82-85,共4页
提出了VRP问题的多目标数学模型.基于此数学模型,概括了一种新的遗传算法来解决带有时间窗的车辆优化配送问题.提出的部分自适应遗传算法采用PFIH来产生初始解,克服了遗传算法参数设置主观的弊病,运用了自我进化的思想来改进遗传算法中... 提出了VRP问题的多目标数学模型.基于此数学模型,概括了一种新的遗传算法来解决带有时间窗的车辆优化配送问题.提出的部分自适应遗传算法采用PFIH来产生初始解,克服了遗传算法参数设置主观的弊病,运用了自我进化的思想来改进遗传算法中涉及的参数设定.最终,通过试验得出了比较满意的结果,证明了该算法的可用性. 展开更多
关键词 城市物流 车辆优化调度 遗传算法 多目标数学模型 自适应
原文传递
MAC 预测控制及其在生产中的应用 被引量:1
9
作者 孟宪尧 《大连海事大学学报》 CAS CSCD 1998年第2期108-110,共3页
以分量豆蛋白的生产过程控制为例,介绍模型启发预测控制MAC算法的实现过程,这种控制方法适用于被控对象无法用精确数学模型描述的、参数不确定的复杂控制过程.
关键词 预测控制 工业控制 MAC算法
原文传递
Spatio-temporal differentiation of spring phenology in China driven by temperatures and photoperiod from 1979 to 2018 被引量:1
10
作者 Xiaojing WU Changxiu CHENG +1 位作者 Cancan QIAO Changqing SONG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第10期1485-1498,共14页
Large amounts of data accumulated in ecology and related environmental sciences arouses urgent need to explore useful patterns and information in it.Here we propose coclustering-based methods and a temperatures-photop... Large amounts of data accumulated in ecology and related environmental sciences arouses urgent need to explore useful patterns and information in it.Here we propose coclustering-based methods and a temperatures-photoperiod driven phenological model to explore spatio-temporal differentiation in long-term spring phenology in China.First,we created the first bloom date(FBD)dataset in China from 1979 to 2018 using the extended spring indices and China Meteorological Forcing Dataset.Then we analyzed the dataset using Bregman block average co-clustering algorithm with I-divergence(BBAC_I)and kmeans algorithm.Such analysis delineated the spatially-continuous phenoregions in China for the first time.Results showed three spatial patterns of FBD in China and their temporal dynamics for 40 years(1979–2018).More specifically,overall late spring onsets occur in 1979–1996,in which areas located in Jiangxi,northern Xinjiang and middle Inner Mongolia experienced constant changing spring onsets.Overall increasingly earlier spring onsets occur in 1997–2012,in which areas located in Fujian,Hunan and eastern Heilongjiang experienced the most variable spring onsets.Stable early spring onsets over China occur after 2012.Results also showed 15 temporal patterns of spring phenology over the study period and their spatial delineation in China.More specifically,most areas in China have the same FBD category for 40 years while northern Guizhou,Hunan and southern Hubei have the same category in 1979–1997 and then fluctuate between different categories.Finally,our results have certain directive significance on the design of existing observational sites in Chinese Phenological Network. 展开更多
关键词 First bloom date co-clustering Big data Spatio-temporal differentiation Temperatures-photoperiod driven phenological model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部