In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between al...In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.展开更多
Algae-lysing bacteria A1 has good control effect on the moss through its extracellular secretion. In order to further study its control mechanism, the sin- gle-factor tests of temperature and pH value, the activated c...Algae-lysing bacteria A1 has good control effect on the moss through its extracellular secretion. In order to further study its control mechanism, the sin- gle-factor tests of temperature and pH value, the activated carbon adsorption test, the organic solvent extraction test and the crude extract of active substance test were carried out to explore the characteristics of active substances. The results showed that the algae-lysing active ingredient of A1 strain had strong thermal stabili- ty, which still had good algae-lysing effect after being treated at 121 ℃ ; when the pH values of fermentation liquid were adjusted to 2.0 and 4.0 respectively, the active substances lost their activities, but their control ability against moss would be enhanced under the alkaline conditions ; the active substances could not be ad- sorbed by activated carbon; the algae-lysing active substances showed strong hydrophilie ability when they were extracted by ethyl acetate, petroleum ether and chloroform. Therefore, it could be speculated that the active substances belonged to carbohydrates. The crude extract results of algae-lysing active substances showed that the active substances secreted by A1 strain were composed by a variety of algae-lysing active substances.展开更多
This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic...This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic bacteria isolated from meat, meat products, milk and dairy products (Staphylococcus aureus subsp. aureus (5 isolates), Bacillus cereus (3 isolates), Bacillus pumilus (1 isolate), Salmonella enterica subsp. enteric (4 isolates) and Enterohaemor-rhagic Escherichia coli O157 (EHEC O157) (4 isolates)). All of these isolates were muti-drug resistant with high MAR index. The results showed that C. compressa extract exhibited better and stronger antibacterial activities against the seventeen tested isolates with inhibition zones diameter ranged from 14 - 22 mm compared to P. pavonica extract which showed positive effect against 9 isolates with low inhibition zone ranged from 11 - 16.5 mm. Flavonoids extracted from C. compressa also displayed the best spectrum of bactericidal effect with a ratio MBC/MIC ≤ 4 obtained on all susceptible tested bacterial strains. Flavonoids and proanthocyanidins significantly contributed to the antibacterial properties. The mode of action of these active extracts is under investigation.展开更多
Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, bi...Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, biohydrogenation and Butyrivibrio group bacteria in goats. Methods: Six goats were used in a repeated 3 x 3 Latin square design, and offered a fixed diet. Algae were infused through rumen cannule with 0 (Control), 6.1 (L-AIg), or 18.3 g (H-AIg) per day. Rumen contents were sampled on d 0, 3, 7, 14 and 20. Results: H-AIg reduced total volatile fatty acid concentration and acetate molar proportion (P 〈 0.05), and increased propionate molar proportion (P 〈 0.05), whereas L-AIg had no effect on rumen fermentation. Changes in proportions of acetate and propionate in H-AIg were obvious from d 7 onwards and reached the largest differences with the control on d 14. Algae induced a dose-dependent decrease in 18:0 and increased trons-18:1 in the ruminal content (P 〈 0.05). H-AIg increased the concentrations of t9, t] 1-18:2 and tl 1, cl 5-18:2 (P 〈 0.05). L-AIg only seemed to induce a transient change in 18-carbon isomers, while H-AIg induced a rapid elevation, already obvious on d 3, concentrations of these fatty acid rose in some cases again on d 20. Algae had no effect on the abundances of Butyrivibfio spp. and Butyrivibrio proteoclosdcus (P 〉 0.10), while H-AIg reduced the total bacteria abundance (P 〈 0.05). However, this was induced by a significant difference between control and H-AIg on d 14 (-4.43 %). Afterwards, both treatments did not differ as increased variation in the H-AIg repetitions, with in some cases a return of the bacterial abundance to the basal level (d 0). Conclusions: Changes in rumen fermentation and 18-carbon UFAs metabolism in response to algae were related to the supplementation level, but there was no evidence of shift in ruminal biohydrogenation pathways towards t1 0-18:1 L-AIg mainly induced a transient effect on rumen biohydrogenation of 18-carbon UFAs, while H-AIg showed an acute inhibition and these effects were not associated with the known hydrogenating bacteria.展开更多
Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their success-ful survival in the ocean,but little is known about their metabolic relationships.Here,bacterial ...Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their success-ful survival in the ocean,but little is known about their metabolic relationships.Here,bacterial communities in the algal sphere(AS)and bulk solution(BS)of nine marine red algal cultures were analyzed,and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS.The metabolic features of Roseibium RMAR6-6(isolated and genome-sequenced),Phycisphaera MAG 12(obtained by metagenomic sequencing),and a marine red alga,Porphyridium purpureum CCMP1328(from GenBank),were analyzed bioinformatically.RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins(B1,B2,B5,B6,B9,and B12),bacterioferritin,dimethylsulfoniopropionate(DMSP),and phenylacetate that may enhance algal growth,whereas MAG 12 may have a limited metabolic capability,not producing vitamins B9 and B12,DMSP,phenylacetate,and siderophores,but with the ability to produce bacitracin,possibly modulating algal microbiome.P.purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12,DMSP,phenylacetate,and siderophore.It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P.pur-pureum,and DMSP reduced the oxidative stress of P.purpureum.The metabolic interactions between strain RMAR6-6 and P.purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture.Taken together,potential metabolic relationships between Roseibium and P.purpureum were proposed.This study provides a bet-ter understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth.展开更多
We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses.Twelve strains of bacteria were obtained from the surfaces of the following four sp...We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses.Twelve strains of bacteria were obtained from the surfaces of the following four species of algae:Gracilaria textorii,Ulva pertusa,Laminaria japonica,and Polysiphonia urceolata.The isolated strains of bacteria can be divided into two groups:Halomonas and Vibrio,in physiology,biochemical characteristics and 16S rDNA sequence analyses.The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters,Halomonas venusta,Vibrio tasmaniensis,Vibrio lentus,and Vibrio splendidus.Isolates from the surface of P.urceolata are more abundant and diverse,of which strains P9 and P28 have a 16S rDNA sequence very similar(97.5%-99.8%) to that of V.splendidus.On the contrary,the isolates from the surfaces of G.textorii,U.pertusa and L.japonica are quite simple and distribute on different branches of the phylogenetic tree.In overall,the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity,and alga-associated bacteria species are algal species specific.展开更多
Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacte...Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillusfusiformis. Its algaelysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesrnus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 10^7 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70% was removed; (3) the strain B5 lysed algae by secreting metabolites and these metabolites could bear heat treatment.展开更多
文摘In the paper, under the framework of exploring the interaction between algae and bacteria, an algae-bacteria ecological model was established to analyze the interaction mechanism and growth coexistence mode between algicidal bacteria and algae. Firstly, mathematical work mainly provided some threshold conditions to ensure the occurrence of transcritical bifurcation and saddle-node bifurcation, which could provide certain theoretical support for selecting key ecological environmental factors and numerical simulations. Secondly, the numerical simulation work dynamically displayed the evolution process of the bifurcation dynamic behavior of the model (2.1) and the growth coexistence mode of algae and algicidal bacteria. Finally, it was worth summarizing that intrinsic growth rate and combined capture effort of algae population had a strong influence on the dynamic behavior of the model (2.1). Furthermore, it must also be noted that transcritical bifurcation and saddle-node bifurcation were the inherent driving forces behind the formation of steady-state growth coexistence mode between algicidal bacteria and algae. In summary, it was hoped that the results of this study would contribute to accelerating the study of the interaction mechanism between algicidal bacteria and algae.
基金Supported by Scientific and Technological Research Projects in Suihua University(KQ1002004)~~
文摘Algae-lysing bacteria A1 has good control effect on the moss through its extracellular secretion. In order to further study its control mechanism, the sin- gle-factor tests of temperature and pH value, the activated carbon adsorption test, the organic solvent extraction test and the crude extract of active substance test were carried out to explore the characteristics of active substances. The results showed that the algae-lysing active ingredient of A1 strain had strong thermal stabili- ty, which still had good algae-lysing effect after being treated at 121 ℃ ; when the pH values of fermentation liquid were adjusted to 2.0 and 4.0 respectively, the active substances lost their activities, but their control ability against moss would be enhanced under the alkaline conditions ; the active substances could not be ad- sorbed by activated carbon; the algae-lysing active substances showed strong hydrophilie ability when they were extracted by ethyl acetate, petroleum ether and chloroform. Therefore, it could be speculated that the active substances belonged to carbohydrates. The crude extract results of algae-lysing active substances showed that the active substances secreted by A1 strain were composed by a variety of algae-lysing active substances.
文摘This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic bacteria isolated from meat, meat products, milk and dairy products (Staphylococcus aureus subsp. aureus (5 isolates), Bacillus cereus (3 isolates), Bacillus pumilus (1 isolate), Salmonella enterica subsp. enteric (4 isolates) and Enterohaemor-rhagic Escherichia coli O157 (EHEC O157) (4 isolates)). All of these isolates were muti-drug resistant with high MAR index. The results showed that C. compressa extract exhibited better and stronger antibacterial activities against the seventeen tested isolates with inhibition zones diameter ranged from 14 - 22 mm compared to P. pavonica extract which showed positive effect against 9 isolates with low inhibition zone ranged from 11 - 16.5 mm. Flavonoids extracted from C. compressa also displayed the best spectrum of bactericidal effect with a ratio MBC/MIC ≤ 4 obtained on all susceptible tested bacterial strains. Flavonoids and proanthocyanidins significantly contributed to the antibacterial properties. The mode of action of these active extracts is under investigation.
基金funded by the Natural Science Foundation of Jiangsu Province (China)the Research Foundation-Flanders (Belgium)the Special Research Fund of the Ghent University (Belgium)
文摘Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, biohydrogenation and Butyrivibrio group bacteria in goats. Methods: Six goats were used in a repeated 3 x 3 Latin square design, and offered a fixed diet. Algae were infused through rumen cannule with 0 (Control), 6.1 (L-AIg), or 18.3 g (H-AIg) per day. Rumen contents were sampled on d 0, 3, 7, 14 and 20. Results: H-AIg reduced total volatile fatty acid concentration and acetate molar proportion (P 〈 0.05), and increased propionate molar proportion (P 〈 0.05), whereas L-AIg had no effect on rumen fermentation. Changes in proportions of acetate and propionate in H-AIg were obvious from d 7 onwards and reached the largest differences with the control on d 14. Algae induced a dose-dependent decrease in 18:0 and increased trons-18:1 in the ruminal content (P 〈 0.05). H-AIg increased the concentrations of t9, t] 1-18:2 and tl 1, cl 5-18:2 (P 〈 0.05). L-AIg only seemed to induce a transient change in 18-carbon isomers, while H-AIg induced a rapid elevation, already obvious on d 3, concentrations of these fatty acid rose in some cases again on d 20. Algae had no effect on the abundances of Butyrivibfio spp. and Butyrivibrio proteoclosdcus (P 〉 0.10), while H-AIg reduced the total bacteria abundance (P 〈 0.05). However, this was induced by a significant difference between control and H-AIg on d 14 (-4.43 %). Afterwards, both treatments did not differ as increased variation in the H-AIg repetitions, with in some cases a return of the bacterial abundance to the basal level (d 0). Conclusions: Changes in rumen fermentation and 18-carbon UFAs metabolism in response to algae were related to the supplementation level, but there was no evidence of shift in ruminal biohydrogenation pathways towards t1 0-18:1 L-AIg mainly induced a transient effect on rumen biohydrogenation of 18-carbon UFAs, while H-AIg showed an acute inhibition and these effects were not associated with the known hydrogenating bacteria.
基金supported by grants from Marine Biotics project(20210469)funded by Ministry of Ocean and Fisheries and the National Research Foundation(2018R1A5A1025077)of the Ministry of Science and ICT,Republic of Korea.
文摘Mutualistic interactions between marine phototrophs and associated bacteria are an important strategy for their success-ful survival in the ocean,but little is known about their metabolic relationships.Here,bacterial communities in the algal sphere(AS)and bulk solution(BS)of nine marine red algal cultures were analyzed,and Roseibium and Phycisphaera were identified significantly more abundantly in AS than in BS.The metabolic features of Roseibium RMAR6-6(isolated and genome-sequenced),Phycisphaera MAG 12(obtained by metagenomic sequencing),and a marine red alga,Porphyridium purpureum CCMP1328(from GenBank),were analyzed bioinformatically.RMAR6-6 has the genetic capability to fix nitrogen and produce B vitamins(B1,B2,B5,B6,B9,and B12),bacterioferritin,dimethylsulfoniopropionate(DMSP),and phenylacetate that may enhance algal growth,whereas MAG 12 may have a limited metabolic capability,not producing vitamins B9 and B12,DMSP,phenylacetate,and siderophores,but with the ability to produce bacitracin,possibly modulating algal microbiome.P.purpureum CCMP1328 lacks the genetic capability to fix nitrogen and produce vitamin B12,DMSP,phenylacetate,and siderophore.It was shown that the nitrogen-fixing ability of RMAR6-6 promoted the growth of P.pur-pureum,and DMSP reduced the oxidative stress of P.purpureum.The metabolic interactions between strain RMAR6-6 and P.purpureum CCMP1328 were also investigated by the transcriptomic analyses of their monoculture and co-culture.Taken together,potential metabolic relationships between Roseibium and P.purpureum were proposed.This study provides a bet-ter understanding of the metabolic relationships between marine algae and algae-associated bacteria for successful growth.
基金Supported by the National Natural Science Foundation of China (No 40376048)the National Basic Research Program of China (973 Program) (No 2006CB400604)
文摘We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses.Twelve strains of bacteria were obtained from the surfaces of the following four species of algae:Gracilaria textorii,Ulva pertusa,Laminaria japonica,and Polysiphonia urceolata.The isolated strains of bacteria can be divided into two groups:Halomonas and Vibrio,in physiology,biochemical characteristics and 16S rDNA sequence analyses.The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters,Halomonas venusta,Vibrio tasmaniensis,Vibrio lentus,and Vibrio splendidus.Isolates from the surface of P.urceolata are more abundant and diverse,of which strains P9 and P28 have a 16S rDNA sequence very similar(97.5%-99.8%) to that of V.splendidus.On the contrary,the isolates from the surfaces of G.textorii,U.pertusa and L.japonica are quite simple and distribute on different branches of the phylogenetic tree.In overall,the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity,and alga-associated bacteria species are algal species specific.
基金Project supported by the Special Funds for Doctor's Station of University(No.20060246024)Young Fund of Fudan University,and the Shanghai Tongji Gao Tingyao Environmental Science and Technology Developmem Fundation
文摘Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillusfusiformis. Its algaelysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesrnus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 10^7 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70% was removed; (3) the strain B5 lysed algae by secreting metabolites and these metabolites could bear heat treatment.