Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man ...Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man disease detection and healing, and artificial brain evolutionusl. Here, we report the first development of human plasma-based amplifier circuit in the dis- crete as well as integrated circuit (IC) configuration mode. Electrolytes in the human blood contain an enormous number of charge carriers such as positive and negative molecule/atom ions, which are electri- cally conducting media and therefore can be utilized for developing electronic circuit components and their application circuits. These electronic circuits obvi- ously have very high application impact potential towards bio-medical engineering and medical science and technology.展开更多
A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is im...A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.展开更多
This paper describes a very low level dc current amplifier using switched capacitor (SC) circuit to miniaturize and improve its output response speed, instead of the conventionally used high-oh-mage resistor. A switch...This paper describes a very low level dc current amplifier using switched capacitor (SC) circuit to miniaturize and improve its output response speed, instead of the conventionally used high-oh-mage resistor. A switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier. The simulation results show that the parasitic capacitances that are distributed to the input portion of the amplifier have some effect on offset voltage. From the experimental results, it is seen that the duty ratio of the clock cycle of SC circuit should be in the range from 0.05 to 0.70. It is suggested that the proposed very low level dc current amplifier using SC circuit is an effective way to obtain both a faster output response and its miniaturization.展开更多
Dear Editor:Kosta et al.;first ever reported the development of biologic electronic components viz resistance R,capacitance C,diode D and transistor T using human tissues and human skin.In our early study;,we have dem...Dear Editor:Kosta et al.;first ever reported the development of biologic electronic components viz resistance R,capacitance C,diode D and transistor T using human tissues and human skin.In our early study;,we have demonstrated the feasibility of liquid medium(synthetic blood plasma)to develop bio-transistor,bio-resistor,and bio-capacitor and combined them to form an amplifier using the metallic harness(the interconnecting展开更多
Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as ...Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.展开更多
A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz cente...A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.展开更多
A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the...A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.展开更多
文摘Dear Editor: There is accumulating evidence that human blood electronic circuit components and their application circuits become more and more important to cyborg implant/engineering, man-machine interface, hu- man disease detection and healing, and artificial brain evolutionusl. Here, we report the first development of human plasma-based amplifier circuit in the dis- crete as well as integrated circuit (IC) configuration mode. Electrolytes in the human blood contain an enormous number of charge carriers such as positive and negative molecule/atom ions, which are electri- cally conducting media and therefore can be utilized for developing electronic circuit components and their application circuits. These electronic circuits obvi- ously have very high application impact potential towards bio-medical engineering and medical science and technology.
文摘A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.
文摘This paper describes a very low level dc current amplifier using switched capacitor (SC) circuit to miniaturize and improve its output response speed, instead of the conventionally used high-oh-mage resistor. A switched capacitor filter (SCF) and an offset controller are also used to decrease vibrations and offset voltage at the output of the amplifier. The simulation results show that the parasitic capacitances that are distributed to the input portion of the amplifier have some effect on offset voltage. From the experimental results, it is seen that the duty ratio of the clock cycle of SC circuit should be in the range from 0.05 to 0.70. It is suggested that the proposed very low level dc current amplifier using SC circuit is an effective way to obtain both a faster output response and its miniaturization.
文摘Dear Editor:Kosta et al.;first ever reported the development of biologic electronic components viz resistance R,capacitance C,diode D and transistor T using human tissues and human skin.In our early study;,we have demonstrated the feasibility of liquid medium(synthetic blood plasma)to develop bio-transistor,bio-resistor,and bio-capacitor and combined them to form an amplifier using the metallic harness(the interconnecting
文摘Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.
文摘A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.
基金The National High Technology Research and Development Program of China(863 Program)(No.2009AA01Z260)
文摘A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.