This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d...This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.展开更多
Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most ev...Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most evident from the reciprocal change in fitness of host and parasite-manifested in terms of pathogen survival versus host resistance. Cytomegaloviruses and their hosts represent a pairing of populations that has co-evolved over hundreds of years. This review explores the pathogenetic consequences emerging from the behavioral changes caused by co-evolutionary forces on the virus and its host.展开更多
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi...Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.展开更多
A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which pr...A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which provides them with more opportunities to facilitate innovation.Therefore,to capture the opportunity behind the uncertainty of a design problem,this study models an innovative design as a composite solving process,where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems,knowledge,and solutions.Additionally,a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem,solution,and knowledge spaces,to provide designers with a distinct design strategy and method for innovative design.The three spaces interact and co-evolve through iterative mappings,including problem structuring,knowledge expansion,and solution generation.The mappings carry the information processing and decision-making activities of the design,and create the path to satisfying solutions.Finally,a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategie...We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.展开更多
A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a populat...A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.展开更多
It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics,...It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics, are usually used to solve these problems. Based on learning and evolution mechanisms of the biological systems, an adaptive co-evolution model was proposed in this paper. Inner-population, inter-population, and community learning operators were presented. The adaptive co-evolution algorithm (ACEA) was designed in detail. Some simulation experiments were done to evaluate the performance of the ACEA. The results show that the ACEA is more effective and feasible than the genetic algorithm to solve the optimization problems.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behaviora...Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).展开更多
Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regressi...Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
The global Internet is a complex network of interconnected autonomous systems(ASes).Understanding Internet inter-domain path information is crucial for understanding,managing,and improving the Internet.The path inform...The global Internet is a complex network of interconnected autonomous systems(ASes).Understanding Internet inter-domain path information is crucial for understanding,managing,and improving the Internet.The path information can also help protect user privacy and security.However,due to the complicated and heterogeneous structure of the Internet,path information is not publicly available.Obtaining path information is challenging due to the limited measurement probes and collectors.Therefore,inferring Internet inter-domain paths from the limited data is a supplementary approach to measure Internet inter-domain paths.The purpose of this survey is to provide an overview of techniques that have been conducted to infer Internet inter-domain paths from 2005 to 2023 and present the main lessons from these studies.To this end,we summarize the inter-domain path inference techniques based on the granularity of the paths,for each method,we describe the data sources,the key ideas,the advantages,and the limitations.To help readers understand the path inference techniques,we also summarize the background techniques for path inference,such as techniques to measure the Internet,infer AS relationships,resolve aliases,and map IP addresses to ASes.A case study of the existing techniques is also presented to show the real-world applications of inter-domain path inference.Additionally,we discuss the challenges and opportunities in inferring Internet inter-domain paths,the drawbacks of the state-of-the-art techniques,and the future directions.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path pla...As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion mode...In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.展开更多
The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic ada...The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.展开更多
This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears...This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.展开更多
基金Project (No.2002CB312200) supported by the National Basic Research Program (973) of China
文摘This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
基金supported by US Public Health Service (NIH grants AI041927,AI050468,DE014145,and DE016813)
文摘Co-evolution has been shown to result in an adaptive reciprocal modification in the respective behaviors of interacting populations over time. In the case of host-parasite co-evolution,the adaptive behavior is most evident from the reciprocal change in fitness of host and parasite-manifested in terms of pathogen survival versus host resistance. Cytomegaloviruses and their hosts represent a pairing of populations that has co-evolved over hundreds of years. This review explores the pathogenetic consequences emerging from the behavioral changes caused by co-evolutionary forces on the virus and its host.
基金The National Natural Science Foundation of China(No. 61139002,61171132)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXZZ11_0219 )+2 种基金the Natural Science Foundation of Jiangsu Province (No. BK2010280)the Open Project of Jiangsu Provincial Key Laboratory of Computer Information Processing Technology (No. KJS1023)the Applying Study Foundation of Nantong(No. BK2011062)
文摘Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction.
基金Supported by National Natural Science Foundation of China(Grant No.51435011).
文摘A design problem with deficient information is generally described as wicked or ill-defined.The information insufficiency leaves designers with loose settings,free environments,and a lack of strict boundaries,which provides them with more opportunities to facilitate innovation.Therefore,to capture the opportunity behind the uncertainty of a design problem,this study models an innovative design as a composite solving process,where the problem is clarified and resolved from fuzziness to satisfying solutions by interplay among design problems,knowledge,and solutions.Additionally,a triple-helix structured model for the innovative product design process is proposed based on the co-evolution of the problem,solution,and knowledge spaces,to provide designers with a distinct design strategy and method for innovative design.The three spaces interact and co-evolve through iterative mappings,including problem structuring,knowledge expansion,and solution generation.The mappings carry the information processing and decision-making activities of the design,and create the path to satisfying solutions.Finally,a case study of a reactor coolant flow distribution device is presented to demonstrate the practicability of this model and the method for innovative product design.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20873130)the Graduate Innovation Fund of USTC
文摘We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.
基金Supported by the National Fundamental Research Project(A1420060159)
文摘A co-evolutional immune algorithm for the optimization of a function with real parameters is de-scribed.It uses a cooperative co-evolution of two populations,one is a population of antibodies and theother is a population of successful mutation vectors.These two population evolve together to improve thediversity of the antibodies.The algorithm described is then tested on a suite of optimization problems.The results show that on most of test functions,this algorithm can converge to the global optimum atquicker rate in a given range,the performance of optimization is improved effetely.
基金Project of Shanghai Committee of Science and Technology, China ( No.08JC1400100, No. QB081404100)Leading Academic Discipline Project of Shanghai Municipal Education Commission, China (No.J51901)
文摘It is important to harmonize effectively the behaviors of the agents in the multi-agent system (MAS) to complete the solution process. The co-evolution computing techniques, inspired by natural selection and genetics, are usually used to solve these problems. Based on learning and evolution mechanisms of the biological systems, an adaptive co-evolution model was proposed in this paper. Inner-population, inter-population, and community learning operators were presented. The adaptive co-evolution algorithm (ACEA) was designed in detail. Some simulation experiments were done to evaluate the performance of the ACEA. The results show that the ACEA is more effective and feasible than the genetic algorithm to solve the optimization problems.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.
文摘Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health).
文摘Accurate and timely monthly rainfall forecasting is a major challenge for the scientific community in hydrological research such as river management project and design of flood warning systems. Support Vector Regression (SVR) is a very useful precipitation prediction model. In this paper, a novel parallel co-evolution algorithm is presented to determine the appropriate parameters of the SVR in rainfall prediction based on parallel co-evolution by hybrid Genetic Algorithm and Particle Swarm Optimization algorithm, namely SVRGAPSO, for monthly rainfall prediction. The framework of the parallel co-evolutionary algorithm is to iterate two GA and PSO populations simultaneously, which is a mechanism for information exchange between GA and PSO populations to overcome premature local optimum. Our methodology adopts a hybrid PSO and GA for the optimal parameters of SVR by parallel co-evolving. The proposed technique is applied over rainfall forecasting to test its generalization capability as well as to make comparative evaluations with the several competing techniques, such as the other alternative methods, namely SVRPSO (SVR with PSO), SVRGA (SVR with GA), and SVR model. The empirical results indicate that the SVRGAPSO results have a superior generalization capability with the lowest prediction error values in rainfall forecasting. The SVRGAPSO can significantly improve the rainfall forecasting accuracy. Therefore, the SVRGAPSO model is a promising alternative for rainfall forecasting.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
基金the China Postdoctoral Science Foundation(2023TQ0089)the National Natural Science Foundation of China(Nos.62072465,62172155)the Science and Technology Innovation Program of Hunan Province(Nos.2022RC3061,2023RC3027).
文摘The global Internet is a complex network of interconnected autonomous systems(ASes).Understanding Internet inter-domain path information is crucial for understanding,managing,and improving the Internet.The path information can also help protect user privacy and security.However,due to the complicated and heterogeneous structure of the Internet,path information is not publicly available.Obtaining path information is challenging due to the limited measurement probes and collectors.Therefore,inferring Internet inter-domain paths from the limited data is a supplementary approach to measure Internet inter-domain paths.The purpose of this survey is to provide an overview of techniques that have been conducted to infer Internet inter-domain paths from 2005 to 2023 and present the main lessons from these studies.To this end,we summarize the inter-domain path inference techniques based on the granularity of the paths,for each method,we describe the data sources,the key ideas,the advantages,and the limitations.To help readers understand the path inference techniques,we also summarize the background techniques for path inference,such as techniques to measure the Internet,infer AS relationships,resolve aliases,and map IP addresses to ASes.A case study of the existing techniques is also presented to show the real-world applications of inter-domain path inference.Additionally,we discuss the challenges and opportunities in inferring Internet inter-domain paths,the drawbacks of the state-of-the-art techniques,and the future directions.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金supported by National Natural Science Foundation of China(No.62073212)Shanghai Science and Technology Commission(No.23ZR1426600).
文摘As the number of automated guided vehicles(AGVs)within automated container terminals(ACT)continues to rise,conflicts have becomemore frequent.Addressing point and edge conflicts ofAGVs,amulti-AGVconflict-free path planning model has been formulated to minimize the total path length of AGVs between shore bridges and yards.For larger terminalmaps and complex environments,the grid method is employed to model AGVs’road networks.An improved bounded conflict-based search(IBCBS)algorithmtailored to ACT is proposed,leveraging the binary tree principle to resolve conflicts and employing focal search to expand the search range.Comparative experiments involving 60 AGVs indicate a reduction in computing time by 37.397%to 64.06%while maintaining the over cost within 1.019%.Numerical experiments validate the proposed algorithm’s efficacy in enhancing efficiency and ensuring solution quality.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
基金supported by Shaanxi Provincial Key Research and Development Program of China(Nos.2024GX-YBXM-305,2024GX-YBXM-178)Shaanxi Province Qinchuangyuan“Scientists+Engineers”Team Construction(No.2022KXJ032)。
文摘In order to solve the problem of path planning of tower cranes,an improved ant colony algorithm was proposed.Firstly,the tower crane was simplified into a three-degree-of-freedom mechanical arm,and the D-H motion model was established to solve the forward and inverse kinematic equations.Secondly,the traditional ant colony algorithm was improved.The heuristic function was improved by introducing the distance between the optional nodes and the target point into the function.Then the transition probability was improved by introducing the security factor of surrounding points into the transition probability.In addition,the local path chunking strategy was used to optimize the local multi-inflection path and reduce the local redundant inflection points.Finally,according to the position of the hook,the kinematic inversion of the tower crane was carried out,and the variables of each joint were obtained.More specifically,compared with the traditional ant colony algorithm,the simulation results showed that improved ant colony algorithm converged faster,shortened the optimal path length,and optimized the path quality in the simple and complex environment.
基金the National Key R&D Program of China(No.2021YFB2700800)the GHfund B(No.202302024490).
文摘The existingmultipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is alack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptationof service requirements and network resources. To address these issues, we propose a multi-constraint pathoptimization scheme based on information fusion in SDN. The proposed scheme collects network topology andnetwork state information on the network side and computes disjoint paths between end hosts. It uses the FuzzyAnalytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters andconstructs a composite quality evaluation function for the paths to determine the priority of the disjoint paths. TheSDN controller extracts the service attributes by analyzing the packet header and selects the optimal path for flowrule forwarding. Furthermore, the service attributes are fed back to the path composite quality evaluation function,and the path priority is dynamically adjusted to achieve dynamic adaptation between service requirements andnetwork status. By continuously monitoring and analyzing the service attributes, the scheme can ensure optimalrouting decisions in response to varying network conditions and evolving service demands. The experimentalresults demonstrated that the proposed scheme can effectively improve average throughput and link utilizationwhile meeting the Quality of Service (QoS) requirements of various applications.
基金supported by NSF China(No.61960206002,62020106005,42050105,62061146002)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University。
文摘This paper focuses on optimally determining the existence of connected paths between some given nodes in random ring-based graphs.Serving as a fundamental underlying structure in network modeling,ring topology appears as commonplace in many realistic scenarios.Regarding this,we consider graphs composed of rings,with some possible connected paths between them.Without prior knowledge of the exact node permutations on rings,the existence of each edge can be unraveled through edge testing at a unit cost in one step.The problem examined is that of determining whether the given nodes are connected by a path or separated by a cut,with the minimum expected costs involved.Dividing the problem into different cases based on different topologies of the ring-based networks,we propose the corresponding policies that aim to quickly seek the paths between nodes.A common feature shared by all those policies is that we stick to going in the same direction during edge searching,with edge testing in each step only involving the test between the source and the node that has been tested most.The simple searching rule,interestingly,can be interpreted as a delightful property stemming from the neat structure of ring-based networks,which makes the searching process not rely on any sophisticated behaviors.We prove the optimality of the proposed policies by calculating the expected cost incurred and making a comparison with the other class of strategies.The effectiveness of the proposed policies is also verified through extensive simulations,from which we even disclose three extra intriguing findings:i)in a onering network,the cost will grow drastically with the number of designated nodes when the number is small and will grow slightly when that number is large;ii)in ring-based network,Depth First is optimal in detecting the connectivity between designated nodes;iii)the problem of multi-ring networks shares large similarity with that of two-ring networks,and a larger number of ties between rings will not influence the expected cost.