期刊文献+
共找到6,596篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis and verification of electrodynamic force,thermal stress and current sharing for CRAFT converter structure design
1
作者 王重马 石朝毅 +6 位作者 张秀青 卢文武 张胜 高先和 许涛 邵兴星 黄连生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期104-111,共8页
In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research... In the design realm of fusion power supplies,structural components play a pivotal role in ensuring the safety of fusion devices.To verify the reliability of the converter structure design at the Comprehensive Research Facility for Fusion Technology(CRAFT),meticulous analysis of the converter's dynamic impact is carefully performed based on the worst fault current(400k A),firstly.Subsequently,the thermal stress analysis based on the maximum allowable steadystate temperature is finished,and the equivalent thermal stress,thermal deformation,maximum shear stress of a single bridge arm and the whole converter are studied.Furthermore,a simple research method involving the current-sharing characteristics of a bridge arm with multithyristor parallel connection is proposed using a combination of Simplorer with Q3D in ANSYS.The results show that the current-sharing characteristics are excellent.Finally,the structural design has been meticulously tailored to meet the established requirements. 展开更多
关键词 electrodynamic analysis thermal stress current-sharing characteristics CRAFT
下载PDF
Pre‑hatch thermal manipulation of embryos and post‑hatch baicalein supplementation mitigated heat stress in broiler chickens
2
作者 Sadid Al Amaz Ajay Chaudhary +2 位作者 Prem Lal Mahato Rajesh Jha Birendra Mishra 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1071-1085,共15页
Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some succes... Background High environmental temperatures induce heat stress in broiler chickens,affecting their health and pro-duction performance.Several dietary,managerial,and genetics strategies have been tested with some success in mitigating heat stress(HS)in broilers.Developing novel HS mitigation strategies for sustaining broiler production is critically needed.This study investigated the effects of pre-hatch thermal manipulation(TM)and post-hatch baica-lein supplementation on growth performance and health parameters in heat-stressed broilers.Results Six hundred fertile Cobb 500 eggs were incubated for 21 d.After candling on embryonic day(ED)10,238 eggs were thermally manipulated at 38.5℃ with 55%relative humidity(RH)from ED 12 to 18,then transferred to the hatcher(ED 19 to 21,standard temperature)and 236 eggs were incubated at a controlled temperature(37.5℃)till hatch.After hatch,180-day-old chicks from both groups were raised in 36 pens(n=10 birds/pen,6 replicates per treatment).The treatments were:1)Control,2)TM,3)control heat stress(CHS),4)thermal manipulation heat stress(TMHS),5)control heat stress supplement(CHSS),and 6)thermal manipulation heat stress supplement(TMHSS).All birds were raised under the standard environment for 21 d,followed by chronic heat stress from d 22 to 35(32–33℃ for 8 h)in the CHS,TMHS,CHSS,and TMHSS groups.A thermoneutral(22–24℃)environment was maintained in the Control and TM groups.RH was constant(50%±5%)throughout the trial.All the data were analyzed using one-way ANOVA in R and GraphPad software at P<0.05 and are presented as mean±SEM.Heat stress significantly decreased(P<0.05)the final body weight and ADG in CHS and TMHS groups compared to the other groups.Embryonic TM significantly increased(P<0.05)the expression of heat shock protein-related genes(HSP70,HSP90,and HSPH1)and antioxidant-related genes(GPX1 and TXN).TMHS birds showed a significant increment(P<0.05)in total cecal volatile fatty acid(VFA)concentration compared to the CHS birds.The cecal microbial analysis showed significant enrichment(P<0.05)in alpha and beta diversity and Coprococcus in the TMHSS group.Conclusions Pre-hatch TM and post-hatch baicalein supplementation in heat-stressed birds mitigate the detrimental effects of heat stress on chickens’growth performance,upregulate favorable gene expression,increase VFA produc-tion,and promote gut health by increasing beneficial microbial communities. 展开更多
关键词 BAICALEIN Growth performance Gut microbiota Heat stress thermal manipulation
下载PDF
Elastic-viscoplastic constitutive equations of K439B superalloy and thermal stress simulation during casting process 被引量:1
3
作者 Da-shan Sui Yu Shan +5 位作者 Dong-xin Wang Jun-yi Li Yao Xie Yi-qun Yang An-ping Dong Bao-de Sun 《China Foundry》 SCIE CAS CSCD 2023年第5期403-413,共11页
K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B su... K439B nickel-based superalloy is a new type of high-temperature material.There is insufficient research on its constitutive equations and numerical modeling of thermal stress.Isothermal tensile experiments of K439B superalloy at different temperatures(20°C-1,000°C)and strain rates(1.33×10^(-3)s^(-1)-5.33×10^(-3)s^(-1))were performed by using a Gleeble-3800 simulator.The elastic moduli at different temperatures(20°C-650°C)were measured by resonance method.Subsequently,stress-strain curves were measured for K439B superalloy under different conditions.The elastic-viscoplastic constitutive equations were established and the correspongding parameters were solved by employing the Perzyna model.The verification results indicate that the calculated values of the constitutive equations are in good agreement with the experimental values.On this basis,the influence of process parameters on thermal stress was investigated by numerical simulation and orthogonal experimental design.The results of orthogonal experimental design reveal that the cooling mode of casting has a significant influence on the thermal stress,while pouring temperature and preheating temperature of shell mold have minimal impact.The distribution of physical fields under optimal process parameters,determined based on the orthogonal experimental design results,was simulated.The simulation results determine separately the specific positions with maximum values for effective stress,plastic strain,and displacement within the casting.The maximum stress is about 1,000.0 MPa,the plastic strain is about 0.135,and the displacement is about 1.47 mm.Moreover,the distribution states of thermal stress,strain,and displacement are closely related to the distribution of the temperature gradient and cooling rate in the casting.The research would provide a theoretical reference for exploring the stress-strain behavior and numerical modeling of the effective stress of the alloy during the casting process. 展开更多
关键词 nickel-based superalloy investment casting Perzyna model elastic-viscoplastic thermal stress numerical simulation
下载PDF
Numerical simulation of coupling heat transfer and thermal stress for spent fuel dry storage cask with different power distribution and tilt angles 被引量:1
4
作者 Wei‑Hao Ji Jian‑Jie Cheng +1 位作者 Han‑Zhong Tao Wei Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期109-127,共19页
Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D com... Dry storage containers must be secured and reliable during long-term storage,and the effect of decay heat released from the internal spent fuel on the cask has become an important research topic.In this paper,a 3D computational fluid dynamics model is presented,and the accuracy of the calculation is verified,with computational errors of less than 6.2%.The thermal stress of the dry storage cask was estimated by coupling it with a transient temperature field.The total power remained constant and adjusting the power ratio of the inner and outer zones had a small effect on the stress results,with a maximum equivalent stress of approximately 5.2 kPa,which occurred at the lower edge of the shell.In the case of tilt,the temperature gradient varied in a wavy distribution,and the wave crest moved from right to left.Altering the tilt angle affects the air distribution in the annular gap,leading to the shell temperature being transformed,with a maximum equivalent stress of 202 MPa at the bottom of the shell.However,the equivalent stress in both cases was less than the yield stress(205 MPa). 展开更多
关键词 thermal stress CFD simulation Spent nuclear fuel Dry storage cask
下载PDF
A behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant,mid-gestation,and late-gestation sows
5
作者 Betty R.McConn Allan P.Schinckel +4 位作者 Lindsey Robbins Brianna N.Gaskill Angela R.Green‑Miller Donald C.Lay Jr Jay S.Johnson 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第2期814-826,共13页
Background:Although thermal indices have been proposed for swine,none to our knowledge differentiate by reproductive stage or predict thermal comfort using behavioral and physiological data.The study objective was to ... Background:Although thermal indices have been proposed for swine,none to our knowledge differentiate by reproductive stage or predict thermal comfort using behavioral and physiological data.The study objective was to develop a behavior and physiology-based decision support tool to predict thermal comfort and stress in multiparous(3.28±0.81)non-pregnant(n=11),mid-gestation(n=13),and late-gestation(n=12)sows.Results:Regression analyses were performed using PROC MIXED in SAS 9.4 to determine the optimal environmental indicator[dry bulb temperature(TDB)and dew point]of heat stress(HS)in non-pregnant,mid-gestation,and lategestation sows with respiration rate(RR)and body temperature(TB)successively used as the dependent variable in a cubic function.A linear relationship was observed for skin temperature(T_(S))indicating that TDB rather than the sow HS response impacted T_(S)and so T_(S)was excluded from further analyses.Reproductive stage was significant for all analyses(P<0.05).Heat stress thresholds for each reproductive stage were calculated using the inflections points of RR for mild HS and TB for moderate and severe HS.Mild HS inflection points differed for non-pregnant,mid-gestation,and late gestation sows and occurred at 25.5,25.1,and 24.0℃,respectively.Moderate HS inflection points differed for non-pregnant,mid-gestation,and late gestation sows and occurred at 28.1,27.8,and 25.5℃,respectively.Severe HS inflection points were similar for non-pregnant and mid-gestation sows(32.9℃)but differed for late-gestation sows(30.8℃).These data were integrated with previously collected behavioral thermal preference data to estimate the TDB that non-pregnant,mid-gestation,and late-gestation sows found to be cool(TDB<TDB preference range),comfortable(TDB=TDB preference range),and warm(TDB preference range<TDB<mild HS).Conclusions:The results of this study provide valuable information about thermal comfort and thermal stress thresholds in sows at three reproductive stages.The development of a behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant,mid-gestation,and late-gestation sows is expected to provide swine producers with a more accurate means of managing sow environments. 展开更多
关键词 Decision support GESTATION Heat stress Management SOWS thermal index
下载PDF
Effects of acute and chronic thermal stress on survival,apoptosis,and transcriptional responses of Scapharca broughtonii
6
作者 Desheng ZOU Weian CAO +7 位作者 Guilong LIU Junhao NING Xia LU Jinjing WANG Min CHEN Bo LIU Jinsheng ZHANG Chunde WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第6期2363-2373,共11页
Ocean warming is altering the habitats of marine invertebrates,which has resulted in an increased physiological stress to marine molluscs,especially those intertidal bivalves,such as the ark shell Scapharca broughtoni... Ocean warming is altering the habitats of marine invertebrates,which has resulted in an increased physiological stress to marine molluscs,especially those intertidal bivalves,such as the ark shell Scapharca broughtonii.We investigated the physiological and transcriptional responses of ark shells to acute and chronic thermal stress results showed that at 33℃,a significantly higher cumulative mortality(55.7%)occurred under acute thermal stress than chronic thermal stress.The apoptosis rate of hemocytes was sustained at higher levels and the necrosis rate was increased significantly in a time-dependent manner under acute thermal stress.However,under chronic thermal stress,the apoptosis and necrosis rates exhibited similar change trends:a rapid increase followed by a gradual decline and sustained at a relatively high level until the end of the experiment.The expressions of heat shock protein genes(HSP20 and HSP90),apoptosis-related genes(TRAF6,GRP78,NIX,and Casp-3),antioxidative-related genes(GST and MRP)and cellular detoxification-related genes(HbⅡB,NOS-1,HO-1,and ENO-1)were upregulated significantly under both acute and chronic thermal stresses.These results demonstrated that the anti-apoptotic system,antioxidant defense system,cellular detoxification system,and heat shock proteins(HSPs)played vital roles for ark shells in response to thermal stress.As acute thermal stress can result in irreversible damage to marine molluscs,it is thus advised that chronic thermal stress should be used to select thermal-resistant ark shell strains. 展开更多
关键词 Scapharca broughtonii thermal stress APOPTOSIS NECROSIS gene expression
下载PDF
Thermal stress damage mechanism in single-crystal germanium caused by 1080 nm laser irradiation
7
作者 沙银川 李泽文 +2 位作者 贾志超 韩冰 倪晓武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期572-578,共7页
The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model base... The process of thermal stress damage during 1080 nm laser ablation of single-crystal germanium was recorded in real time using a high-speed charge-coupled device.A three-dimensional finite element numerical model based on Fourier's heat conduction equation,Hooke's law and the Alexander–Hasson equation was developed to analyze the thermal stress damage mechanism involved.The damage morphology of the ablated samples was observed using an optical microscope.The results show that the cooling process has an important influence on fracture in the laser-irradiated region of single-crystal germanium.Fracture is the result of a combination of thermal stress and reduction in local yield strength. 展开更多
关键词 thermal stress single-crystal germanium FRACTURE damage mechanism
下载PDF
Fluid-Structure Coupled Analysis of the Transient Thermal Stress in an Exhaust Manifold
8
作者 Liang Yi Wen Gang +2 位作者 Nenggui Pan Wangui Wang Shengshuai Mo 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2777-2790,共14页
The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STA... The development of thermal stress in the exhaust manifold of a gasoline engine is considered.The problem is addresses in the frame of a combined approach wherefluid and structure are coupled using the GT-POWER and STAR-CCM+software.First,the external characteristic curve of the engine is compared with a one-dimen-sional simulation model,then the parameters of the model are modified until the curve matches the available experimental values.GT-POWER is then used to transfer the inlet boundary data under transient conditions to STAR-CCM+in real-time.The temperature profiles of the inner and outer walls of the exhaust manifold are obtained in this way,together with the thermal stress and thermal deformation of the exhaust manifold itself.Using this information,the original model is improved through the addition of connections.Moreover,the local branch pipes are optimized,leading to significant improvements in terms of thermal stress and thermal deforma-tion of the exhaust manifold(a 7%reduction in the maximum thermal stress). 展开更多
关键词 Exhaust manifold fluid-structure coupling temperaturefield thermal stress
下载PDF
Numerical Solution for Thermal Elastohydrodynamic Lubrication of Line Contact with Couple Stress Fluid as Lubricant
9
作者 Vishwanath B.Awati Mahesh Kumar N N.M.Bujurke 《Journal of Mechanical Materials and Mechanics Research》 2023年第1期22-35,共14页
In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FA... In this paper,the detailed analysis of the influence of thermal and non-Newtonian aspects of lubricant(couple stress fluid)on EHL line contact as a function of slide-roll ratio is presented.The novel low complexity FAS(full approximation scheme),of the multigrid scheme,with Jacobi dipole and Gauss Seidel relaxation is used for the solution of coupled equations viz.modified Reynolds equation,film thickness equation and energy equation satisfying appropriate boundary conditions.The analysis reveals the combined influence of non-Newtonian,thermal and slide-roll ratio(of bearing moving with different speeds)on pressure,film thickness and pressure spike covering a wide range of physical parameters of interest.Results show that pressure spike is strongly influenced by thermal,slide-roll ratio and non-Newtonian character of lubricant with negligible effect on the overall pressure distribution.Also,the minimum film thickness is slightly altered and it increases with the increase in the couple stress parameter.These findings confirm the importance of non-Newtonian and thermal effects in the study of EHL. 展开更多
关键词 thermal EHL Slide-roll ratio Couple stress fluid Multigrid FAS Non-Newtonian
下载PDF
Research Progress on Economic Forest Water Stress Based on Bibliometrics and Knowledge Graph
10
作者 Xin Yin Shuai Wang +3 位作者 Chunguang Wang Haichao Wang Zheying Zong Zeyu Ban 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第5期843-858,共16页
This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to revi... This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared,spectral remote sensing technology,and the estimation of economic forest water stress.It aimed to review the development and current status of this field,as well as to identify future research trends.A search was conducted on the China National Knowledge Infrastructure(CNKI)database using the keyword“water stress”for relevant studies from 2003 to 2023.The visual analysis function of CNKI was used to generate the distribution of annual publication volume,and CiteSpace 6.1.R6 was utilized to create network maps illustrating collaboration among authors and institutions.The study also analyzed the hotspots and frontiers of economic forest water stress.As a result,a total of 6664 academic journal articles related to water stress were retrieved.Considerable collaboration networks were observed among scholars and institutions,with a focus on using crown temperature monitoring to diagnose crop water stress.Based on the research findings,it was evident that the primary research trend involved the use of thermal infrared and spectral remote sensing technology for estimating water stress,making it a future research hotspot. 展开更多
关键词 Water stress thermal infrared SPECTRAL visual analysis knowledge map CITESPACE
下载PDF
Static and Thermal Analysis of Aluminium (413,390,384 and 332) Piston Using Finite Element Method
11
作者 Offei David Inusah Jacob Kwaku Nkrumah Vincent Akolbire Atindana 《Modeling and Numerical Simulation of Material Science》 2024年第1期1-38,共38页
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut... The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders. 展开更多
关键词 Von Mise stress Total deformation Aluminium alloy thermal analysis. PISTON Static structural Heat fux
下载PDF
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
12
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
下载PDF
Application of thermal stress model to paint removal by Q-switched Nd:YAG laser 被引量:7
13
作者 邹万芳 谢应茂 +2 位作者 肖兴 曾祥志 罗颖 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期433-438,共6页
In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse lase... In this paper, we demonstrate that thermal stress is the main mechanism in the process of paint removal by Q-switched Nd:YAG laser (λ = 1064 nm, τ = 10 ns). A theoretical model ofpaint removal by short-pulse laser is established from the perspective of thermal stress. Thermal stress is generated by thermal expansion, and the temperatures of different samples are calculated according to the one-dimensional (1D) heat conduction equation. The theoretical cleaning threshold can be obtained by comparing thermal stress with the adhesion of paint, and the theoretical damage threshold is obtained by calculating the temperature. Moreover, the theoretical calculations are verified by experimental results. It is shown that the thermal stress model of the laser cleaning is very useful to choose the appropriate laser fluence in the practical applications of paint removal by Q-switched Nd: YAG laser because our model can validly balance the efficiency of laser cleaning and the safety of the substrate. 展开更多
关键词 laser cleaning thermal stress cleaning threshold damage threshold
下载PDF
Numerical Simulation on Thermal Stress of Large-scale Bearing Roller during Heating Process of Final Heat Treatment 被引量:4
14
作者 Li Yongjun, Pan Jiansheng, Zhang Weimin, Gu Jianfeng, Hu Mingjuan Open Lab of the Educational Ministry for High Temperature Material & Tests, SJTU, Shanghai, 200030 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期347-350,共4页
hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that... hi this paper, the non-linear finite element method had been applied to calculate the thermal stress evolving process of the large-scale bearing roller during heating process of final heat treatment. It was found that two stress peaks appeared during heating process and the second stress peak was higher than the first. If the preheating time was elongated, the second stress peak was reduced distinctly. Therefore, the pre-heating time should be elongated suitably to ensure safety in the practical manufacture process. 展开更多
关键词 Numerical Simulation NON-LINEAR FEM Heat Treatment thermal stress
下载PDF
Numerical Simulation of Transient Thermal Stress Field for Laser Metal Deposition Shaping 被引量:3
15
作者 LONG Risheng~(1,2) LIU Weijun~1 (1.Advanced Manufacture Lab,Shenyang Institute of Automation,Shenyang 110016,China 2.Graduate School,Chinese Academy or Sciences,Beijing 100039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1025-1030,共6页
To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique o... To decrease thermal stress during laser metal deposition shaping(LMDS)process,it is of great importance to learn the transient thermal stress distribution regularities.Based on the“element life and death”technique of finite element analy- sis(FEA),a three-dimensional multi-track and multi-layer numerical simulation model for LMDS is developed with ANSYS parametric design language(APDL)for the first time,in which long-edge parallel reciprocating scanning paths is introduced. Through the model,detailed simulations of thermal stress during whole metal cladding process are conducted,the generation and distribution regularities of thermal stress are also discussed in detail.Using the same process parameters,the simulation results show good agreement with the features of samples which fabricated by LMDS. 展开更多
关键词 LMDS FEA TRANSIENT thermal stress FIELD NUMERICAL simulation
下载PDF
EFFECT OF STRUCTURAL PARAMETERS ON THE THERMAL STRESS OF A NiFe_(2)O_(4)-BASED CERMET INERT ANODE IN ALUMINUM ELECTROLYSIS 被引量:4
16
作者 J. Li Z.G. Wang Y.Q. Lai Y.Y. Wu S.L. Ye 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第2期139-147,共9页
Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working co... Inert anode has been a hot issue in the aluminum industry for many decades. With the help of FEA (finite element analysis) software ANSYS, a model was developed to simulate the thermal stress distribution working condition of an inert anode. To reduce its thermal stress, the effect of some parameters on the thermal stress distribution was investigated, including the anode height, the anode radius, the hole depth, the hole radius, and the radius of inner chamfer and outer chamfer. The results showed that in the actual working condition of an inert anode, there existed a large axial tensile stress near the tangent interface between the anode and bath, which was the major cause of anode breaking. Increasing the anode height and reducing the hole depth properly seemed to be beneficial for the stress distribution. With the increase of anode radius, the stress distribution became better first and then deteriorated, the reasonable value was between 0.045 to 0.06m. The hole radius had a significant effect on the stress and a smaller radius would reduce the thermal stress. The effect of the radius of the inner chamfer and the outer chamfer was less than other parameters. 展开更多
关键词 inert anode thermal stress structural parameter aluminum electrolysis
下载PDF
Thermal residual stresses and stress distributions under tensile and compressive loadings of short fiber reinforced metal matrix composites 被引量:5
17
作者 丁向东 连建设 +1 位作者 江中浩 孙军 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期399-404,共6页
The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite ele... The thermal residual stresses and the stress distributions of short fiber reinforced metal matrix composite under tensile and compressive loadings were studied using large strain axisymmetric elasto plastic finite element method. It is demonstrated that the thermal residual stresses can result in asymmetrical stress distributions and matrix plasticity. The thermal residual stresses decrease the stress transfer in tension and enhance the stress transfer in compression. The fiber volume fraction has more important effects on the thermal residual stresses and the stress distributions under tensile and compressive loadings than the fiber aspect ratio and the fiber end distance. [ 展开更多
关键词 metal matrix composite finite element method thermal residual stresses stress distribution
下载PDF
ANALYSIS OF THERMAL-ELASTIC STRESS OF WHEEL-RAIL IN ROLLING-SLIDING CONTACT 被引量:4
18
作者 ZHAO Xin JIN Xuesong ZHAI Wanming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期18-23,共6页
A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force p... A coupling thermo-mechanical model of wheel/rail in rolling-sliding contact is put forward using finite element method. The normal contact pressure is idealized as the Hertzian distribution, and the tangential force presented by Carter is used. In order to obtain thermal-elastic stress, the ther-mal-elastic plane stress problem is transformed to an elastic plane stress problem with equivalent fictitious thermal body force and fictitious boundary distributed force. The temperature rise and ther-mal-elastic stress of wheel and rail in rolling-sliding are analyzed. The non-steady state heat transfer between the contact surfaces of wheel and rail, heat-convection and radiation between the wheel/rail and the ambient are taken into consideration. The influences of the wheel rolling speed and wear rate on friction temperature and thermal-elastic stress are investigated. The results show the following: ① For rolling-sliding case, the thermal stress in the thin layer near the contact patch due to the friction temperature rise is severe. The higher rolling speed leads to the lower friction temperature rise and thermal stress in the wheel; ② For sliding case, the friction temperature and thermal stress of the wheel rise quickly in the initial sliding stage, and then get into a steady state gradually. The expansion of the contact patch, due to material wear, can affect the friction temperature rise and the thermal stress during wear process. The higher wear rate generates lower stress. The results can help under-stand the influence of friction temperature and thermal-elastic stress on wheel and rail damage. 展开更多
关键词 Wheel/rail fiiction thermal stress Temperature rise Heat transfer Finite element method
下载PDF
THERMAL STRESSES RELAXATION DESIGN OF Ni/NiFe_(2)O_(4) SYSTEM FUNCTIONALLY GRADED CERMET INERT ANODE 被引量:4
19
作者 J. Li Q.S. Zhang Y.Q. Lai S.L. Ye Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期635-641,共7页
The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary co... The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary condition during high-temp (955℃) electrolysis were calculated using the finite-element software ANSYS, the influence of different parameters on the distribution of the thermal stresses were analyzed. The results showed that, during the process of thermal shock, the thermal hoop tensile stress on the surface of the anode is very large, which is possibly the major cause of anode crack; when the radius of the anode is between 0.05-0.15m, a range that can be realized by recent manufacturing technology, the optimum composition distribution exponent p is 0.25; The hoop tensile stresses reduce with the decrease of anode scale and also decrease with the decrease of the convection coefficient between the electrolyte and the anode. 展开更多
关键词 functionally graded material (FGM) transient thermal stresses ANSYS inert anode aluminum electrolysis
下载PDF
Dynamic thermal stress distribution in surface of two-dimensional cavity 被引量:3
20
作者 盖秉政 刘杰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第2期110-116,共7页
Although we have had the problem of dynamic thermal stress distribution solved in the surface of a cavity in some special shapes, a general solution to this problem for an arbitrary shaped cavity was still not obtaine... Although we have had the problem of dynamic thermal stress distribution solved in the surface of a cavity in some special shapes, a general solution to this problem for an arbitrary shaped cavity was still not obtained. Using the complex function method, the present paper analyzed the dynamic thermal stress distribution in the surface of an arbitrary shaped cavity subjected to a steady temperature field. Actually, not only is a general solution of this problem represented by Hankle function obtained for an arbitrary shaped cavity, but also a process to calculate the coefficient of the dynamic thermal stress distribution in the surface of an arbitrary shaped cavity is derived. For illustration, some numerical results of a circular cavity, an elliptic cavity, a lining horseshoe cavity and a square cavity are given. 展开更多
关键词 STEADY DYNAMIC thermal stress complex FUNCTION method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部