期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
The dynamic field in turbulent round jet discharging into a co-flowing stream
1
作者 Mohamed Hichem Gazzah Nejmiddin Boughattas +1 位作者 Hafedh Belmabrouk Rachid Said 《Natural Science》 2010年第6期635-640,共6页
The effects of a co-flow on a spreading and entrainment rate of turbulent round jets have been studied numerically. The first and second order closure models are used and have been comp- ared with existing experimenta... The effects of a co-flow on a spreading and entrainment rate of turbulent round jets have been studied numerically. The first and second order closure models are used and have been comp- ared with existing experimental data. The influence of theses models on the dynamic fields is examined. The results of the models in general agree well with the trends observed experiment- tally. The co-flowing imposed noticeable restri- ctions on the spreading and the turbulent mixing. Finally, an entrainment hypothesis has been introduced to describe the development of turbulent jets issuing into a stagnant or co-flowing air. It relates the mass flow rate of the surround- ing fluid entrained into the jet to the characteristic velocity difference between the jet and the co-flow. It is obvious that the co-flow decreases considerably the entrainment of air. 展开更多
关键词 co-flow TURBULENCE Jets MODELS ENTRAINMENT
下载PDF
Influences of Co-Flow and Counter-Flow Modes of Reactant Flow Arrangement on a PEMFC at Start-Up
2
作者 Qianqian Shao Min Wang Nuo Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1337-1356,共20页
To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow... To investigate the influences of co-flowand counter-flowmodes of reactant flowarrangement on a proton exchange membrane fuel cell(PEMFC)during start-up,unsteady physical and mathematical models fully coupling the flow,heat,and electrochemical reactions in a PEMFC are established.The continuity equation and momentum equation are solved by handling pressure-velocity coupling using the SIMPLE algorithm.The electrochemical reaction rates in the catalyst layers(CLs)of the cathode and anode are calculated using the Butler-Volmer equation.The multiphase mixture model describes the multiphase transport process of gas mixtures and liquid water in the fuel cell.After validation,the influences of co-flow and counter-flow modes on the PEMFC performance are investigated,including the evolution of the current density,flow field,temperature field,and reactant concentration field during start-up,as well as the steady distribution of the current density,reactant concentration,andmembrane water content when the start-up stabilizes.Co-flow and counter-flow modes influence the current density distribution and temperature distribution.On the one hand,the co-flow mode accelerates the start-up process of the PEMFC and leads to a more evenly distributed current density than the counter-flow mode.On the other hand,the temperature difference between the inlet and outlet sections of the cell is up to 10.1℃ under the co-flow mode,much larger than the 5.0℃ observed in the counter-flow mode.Accordingly,the counter-flowmode results in a more evenly distributed temperature and a lower maximum temperature than the co-flow case.Therefore,in the flow field design of a PEMFC,the reactant flow arrangements can be considered to weigh between better heat management and higher current density distribution of the cell. 展开更多
关键词 PEMFC full coupling model Butler-Volmer equation multiphase mixture model co-flow mode counter-flow mode
下载PDF
Size prediction of κ-carrageenan droplets formed in co-flowing immiscible liquid
3
作者 Jun-Yee Leong Tek-Kaun Lim +1 位作者 Ravindra Pogaku Eng-Seng Chan 《Particuology》 SCIE EI CAS CSCD 2011年第6期637-643,共7页
The formation of K-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This stud... The formation of K-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This study focused on predicting K-carrageenan drop size using force balance analysis. The force balance model considers the interracial tension to be the solitary attaching force, while a combination of the drag force from the co-flowing palm oil and the body force of the extruding K-carrageenan liquid act as the detaching forces. The conventional model gave poor predictions for droplet size, with an average relative deviation of 23%. This large deviation could be attributed to necking phenomena and an underestimation of the drag force generated on the shear-thinning K-carrageenan solution. By incorporating correction factors, the average relative deviation of the force balance model dronned to 4%. 展开更多
关键词 K-Carrageenan Droplet Channel emulsification co-flowing Dripping Bioencapsulation
原文传递
基于Web的工作流管理系统:co-Flow 被引量:7
4
作者 李伟刚 莫蓉 +1 位作者 杨海成 王增强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2002年第8期717-720,共4页
讨论 Internet环境下协同产品开发的特征 ,研究它对工作流管理系统的要求 ;为适应这些要求 ,提出一个基于 Web的工作流管理系统软件体系结构 ;并详细介绍了该系统中的基于 XML的工作流过程定义和分布式工作流引擎间的互操作机制 .该系... 讨论 Internet环境下协同产品开发的特征 ,研究它对工作流管理系统的要求 ;为适应这些要求 ,提出一个基于 Web的工作流管理系统软件体系结构 ;并详细介绍了该系统中的基于 XML的工作流过程定义和分布式工作流引擎间的互操作机制 .该系统的软件原型“co-Flow”能够适应 展开更多
关键词 WEB 工作流管理系统 co-flow 软件原型 软件体系结构
下载PDF
Formation of Copolymer-Ag Nanoparticles Composite Micelles in Three-dimensional Co-flow Focusing Microfluidic Device 被引量:1
5
作者 FENG Mengran HE Guangyao +4 位作者 YI Si SONG Weizheng CHEN Yanjun ZHANG Chaocan WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1259-1265,共7页
A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles(NPs) in a three-dimensional co-flow focusing microfluidic device(3D CFMD). Self-assembly of the copolymers was i... A novel method was presented to create composite micelles of amphiphilic copolymers and Ag nanoparticles(NPs) in a three-dimensional co-flow focusing microfluidic device(3D CFMD). Self-assembly of the copolymers was initiated by the fast mixing of water and a blend dispersion of hydrophobic Ag NPs and amphiphilic copolymers. At the same time, the hydrophobic Ag NPs enter the core of copolymer micelles, based on the hydrophobic interaction. The copolymer-Ag NPs composite micelles have a core-shell structure with copolymer shell and Ag NPs core. COMSOL Multiphysics is used to simulate the concentration distribution of copolymers and Ag NPs under different flow rates. Co-assembly microfluidic conditions are determined based on simulation results. Under suitable microfluidic conditions, both block copolymers and gradient copolymers can co-assemble with hydrophobic Ag NPs to form composite micelles, respectively. This microfluidic coassembly method will have a good prospect in the preparation of composite micelles of amphiphilic copolymers and metal nanoparticles. 展开更多
关键词 composite micelles SELF-ASSEMBLY co-flow microfluidic simulation amphiphilic copolymers Ag nanoparticles
下载PDF
Hydrodynamics and Mass Transfer of Jet Co-flow Packing Tray
6
作者 刘国标 兰仁水 +1 位作者 王树楹 余国琮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第1期131-134,共4页
The jet co-flow packing tray(JCPT) with three different types of perforation in equal opening fraction was tested in two rectangular columns with 0.12m in width and 0.27m in length operated with air-water system. The ... The jet co-flow packing tray(JCPT) with three different types of perforation in equal opening fraction was tested in two rectangular columns with 0.12m in width and 0.27m in length operated with air-water system. The influences of gas phase orifice F-factor and clear liquid height Hc on the amount of liquid lifted, Q, were examined. The corresponding correlation between Q with F-factor and equivalent diameter of perforated holes as well as Hc was obtained. Furthermore, the non-steady state mass transfer performance of JCPT was tested by the humidification of air with water. Finally, by the analysis of data and comparison, it was found that the JCPT tray with single cap and two holes exhibited the highest mass transfer efficiency and best performance. 展开更多
关键词 PACKING TRAY mass transfer tray efficiency jet co-flow packing tray
下载PDF
Numerical Study of Co-flow Jet Control on Corner Separation in Compressor Cascade
7
作者 Rui-ling Xu Tong-xi Li +1 位作者 Zhi-heng Wang Guang Xi 《风机技术》 2024年第5期25-33,共9页
The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance an... The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance. 展开更多
关键词 Compressor Cascade co-flow Jet Control Corner Separation Loss Analysis Vortex Structure Analysi
下载PDF
Development of point source method and its practical significance
8
作者 Bidya Sagar PANI 《Water Science and Engineering》 EI CAS 2009年第2期19-31,共13页
The advantages of Reichardt's hypothesis in dealing with single and multiple circular jets in a stagnant environment are highlighted. The stages involved in the development of the point source method, an offshoot of ... The advantages of Reichardt's hypothesis in dealing with single and multiple circular jets in a stagnant environment are highlighted. The stages involved in the development of the point source method, an offshoot of the new hypothesis, are presented, Previous results of experiments on multiple circular jets in a stagnant environment justify the method of superposition. As a prelude to discussion of multiple jets in a co-flowing stream, results on the excess-velocity decay, the growth of the shear layer, and the dilutions for a single jet based on Reichardt's hypothesis are presented. The spreading hypothesis is generalized by introducing a link factor kl to account for the co-flowing stream. The distribution of excess-momentum flux uAu is shown to be Gaussian in nature. Based on the principle of superposition, the decay of the maximum excess velocity and the dilution are predicted for odd and even numbers of jets in an array. The predictions seem to be in good agreement with observed data. 展开更多
关键词 point source method method of superposition co-flowing jets Reiehardt'shypothesis multiple circular jets
下载PDF
RANS Simulation of Methane Diffusion Flame: Comparison of Two Chemical Kinetics Mechanisms
9
作者 Guessab Ahmed Abdelkader Aris +1 位作者 Iskander Gokalp Faouzi Tabet Helal 《Journal of Physical Science and Application》 2013年第6期400-408,共9页
Turbulent non-premixed combustion of gaseous fuels is of importance for many technical applications, especially for the steel and refractory industry. Accurate turbulent flow and temperature fields are of major import... Turbulent non-premixed combustion of gaseous fuels is of importance for many technical applications, especially for the steel and refractory industry. Accurate turbulent flow and temperature fields are of major importance in order to predict details on the concentration fields. The performances of the GRI-Mech 3.0 and the Jones and Lindstedt mechanisms are compared. Detailed chemistry is included with the GRI-Mech 3.0 and J-L kinetic mechanisms in combination with the laminar flamelet combustion model. The combustion system selected for this comparison is a confined non-premixed methane flame surrounded by co-flowing air The simulation results are compared with experimental data of Lewis and Smoot (2001). 展开更多
关键词 co-flow methane/air turbulent flame COMBUSTION numerical simulation chemical kinetic.
下载PDF
Numerical investigation of co-flow jet airfoil with parabolic flap
10
作者 Ruochen WANG Xiaoping MA +2 位作者 Guoxin ZHANG Pei YING Xiangyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期78-95,共18页
Both the Active Flow Control(AFC)and the variable-camber technology are considered as efficient ways to enhance the aerodynamic performance of an aircraft.The present study investigated the feasibility of the combinat... Both the Active Flow Control(AFC)and the variable-camber technology are considered as efficient ways to enhance the aerodynamic performance of an aircraft.The present study investigated the feasibility of the combination of a Co-Flow Jet(CFJ)airfoil and a parabolic flap,where the Reynolds Average Navier-Stokes(RANS)equations and the Spalart-Allmaras(S-A)turbulence model were exploited for the numerical simulation.Several significant geometric parameters,including the injection slot location,the suction slot location,the injection slot angle,the suction slot angle and the airfoil Suction Surface Translation(SST),were selected to study their effects on the aerodynamics of the proposed configuration.Then,an optimized design was created and compared with the baseline airfoil.The results show that the CFJ airfoil combined with the parabolic flap is more beneficial to the aerodynamic performance enhancement at small angles of attack.It is preferable to locate the injection slot at a 2%chord-wise location and the suction slot at a 75%chord-wise location.Both the decrease of the injection slot angle and the augmentation of the suction slot angle could reduce the drag.Furthermore,the SST of 0.5%chord is selected due to its high gain in the corrected aerodynamic efficiency at small angles of attack.Compared with the baseline,the optimized design could increase the lift coefficient and the corrected lift-to-drag ratio by 32.1%and 93.8%respectively at the angle of attack a=4°. 展开更多
关键词 Active flow control Aerodynamic performance co-flow jet Parabolic flap Variable-camber technology
原文传递
Experimental design for a novel co-flow jet airfoil
11
作者 Hao Jiang Weigang Yao Min Xu 《Advances in Aerodynamics》 EI 2023年第1期630-652,共23页
The Co-flow Jet(CFJ)technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation.The aim of this study is to empirically vali... The Co-flow Jet(CFJ)technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation.The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments.The CFJ airfoil is structured in a tri-sectional design,consisting of one experimental segment and two stationary segments.A support rod penetrates the airfoil,fulfilling dual roles:it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel.In parallel,the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls.The experimental results are compared with numerical simulations,specifically focusing on aerodynamic parameters and flow field distribution.The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil,showing strong agreement with the simulation data. 展开更多
关键词 co-flow jet Wind tunnel experiment Flow control Wall effect
原文传递
Aerodynamic performance enhancement forflapping airfoils by co-flow jet 被引量:7
12
作者 Tao WU Bifeng SONG +2 位作者 Wenping SONG Wenqing YANG Zhonghua HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2535-2554,共20页
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to fla... Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV). 展开更多
关键词 Aerodynamic performance co-flow jet Flapping airfoils Flow control Propulsive efficiency
原文传递
Numerical study of methane/air jet flame in vitiated co-flow using tabulated detailed chemistry 被引量:7
13
作者 HAN Chao ZHANG Pei +1 位作者 YE TaoHong CHEN YiLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第9期1750-1760,共11页
Two different combustion models,the autoignition(AI)model and flamelet/progress variable(FPV)model,have been applied to study the auto-ignition process of methane/air jet flame in vitiated co-flow.A priori study was c... Two different combustion models,the autoignition(AI)model and flamelet/progress variable(FPV)model,have been applied to study the auto-ignition process of methane/air jet flame in vitiated co-flow.A priori study was conducted to test the validity of the two models.Results show that the different range of predicted reaction rates is mainly responsible for their different performances in large eddy simulation(LES)studies.In this paper,beta PDF was used to model the mixture fraction distribution,while two different shapes of PDF,delta function and beta function,were applied for the reaction progress.Compared to the FPV model,the AI model combined with beta function for reaction progress could capture the auto-ignition process and predict the exact lifted height.Also the results indicate that the variance of reaction progress plays an important role in predicting the flame lifted height. 展开更多
关键词 large eddy simulation flamelet/progress variables AUTOIGNITION vitiated co-flow flame
原文传递
Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet 被引量:5
14
作者 Jiaqi LIU Rongqian CHEN +1 位作者 Yancheng YOU Zheyu SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期169-184,共16页
The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a h... The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack.The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ)is numerically investigated in this work.The flowfield of the airfoil is simulated by solving Reynolds Averaged Navier-Stokes equations based on the sliding mesh technique.Firstly,to improve the effect of a traditional CFJ on suppressing rotor airfoil shock-induced dynamic stall,an improved CFJ—a CFJ-sloping slot is proposed.Research shows that the CFJsloping slot suppresses the shock-induced dynamic stall more effectively than a traditional CFJ.Moreover,the improved CFJ can also suppress the dynamic stall of rotor airfoil at low speed and high angles of attack.The improved CFJ proposed in this paper is an effective flow control method that simultaneously suppresses the dynamic stall of the advancing and retreating blades.The mechanism of the improved CFJ in suppressing the dynamic stall of the rotor airfoil is studied,and a comparison is made between the improved CFJ and the traditional CFJ in terms of dynamic stall suppression at high and low speed.Finally,the effect of improved CFJ parameters(the jet momentum coefficient,the position of the injection/suction slot,and the size of the injection/suction slot)on shock-induced dynamic stall suppression is analyzed. 展开更多
关键词 co-flow jet Dynamic stall Flow control Parameter analysis Rotor airfoil
原文传递
Aerodynamic performance enhancement of co-flow jet airfoil with simple high-lift device 被引量:4
15
作者 Haolin ZHI Zhenhao ZHU +2 位作者 Yujin LU Shuanghou DENG Tianhang XIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第9期143-155,共13页
The present study performed a numerical investigation to explore the performance enhancement of a co-flow jet(CFJ)airfoil with simple high-lift device configuration,with a specific goal to examine the feasibility and ... The present study performed a numerical investigation to explore the performance enhancement of a co-flow jet(CFJ)airfoil with simple high-lift device configuration,with a specific goal to examine the feasibility and capability of the proposed configuration for low-speed take-off and landing.Computations have been accomplished by an in-house-programmed Reynoldsaveraged Navier-Stokes solver enclosed by k-ωshear stress transport turbulence model.Three crucial geometric parameters,viz.,injection slot location,suction slot location and its angle were selected for the sake of revealing their effects on aerodynamic lift,drag,power consumption and equivalent lift-to-drag ratio.Results show that using simple high-lift devices on CFJ airfoil can significantly augment the aerodynamic associated lift and efficiency which evidences the feasibility of CFJ for short take-off and landing with small angle of attack.The injection and suction slot locations are more influential with respect to the aerodynamic performance of CFJ airfoil compared with the suction slot angle.The injection location is preferable to be located in the downstream of the pressure suction peak on leading edge to reduce the power expenditure of the pumping system for a relative higher equivalent lift-to-drag ratio.Another concluded criterion is that the suction slot should be oriented on the trailing edge flap for achieving more aerodynamic gain,meanwhile,carefully selecting this location is crucial in determining the aerodynamic enhancement of CFJ airfoil with deflected flaps. 展开更多
关键词 AIRFOIL co-flow jet Flow control Aerodynamic performance enhancement Simple high-lift device
原文传递
Aerodynamic characteristics of co-flow jet wing with simple high-lift devices
16
作者 Zhenhao ZHU Tianhang XIAO +2 位作者 Haolin ZHI Shuanghou DENG Yujin LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期67-83,共17页
Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet(CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial... Numerical investigations are conducted to explore the aerodynamic characteristics of three-dimensional Co-Flow Jet(CFJ) wing with simple high-lift devices during low-speed takeoff and landing. Effects of three crucial parameters of CFJ wing, i.e., angle of attack, jet momentum and swept angle, are comprehensively examined. Additionally, the aerodynamic characteristics of two CFJ configurations, i.e., using open and discrete slots for injection, are compared. The results show that applying CFJ technique to a wing with simple high-lift device is able to generate more lift,reduce drag and enlarge stall margin with lower energy expenditure due to the super-circulation effect. Increasing the jet intensity can reduce the drag significantly, which is mainly contributed by the reaction jet force. The Oswald efficiency factor is, in some circumstances, larger than one,which indicates the potential of CFJ in reducing induced drag. Compared with clean wing configuration, using CFJ technique allows the aerodynamic force variation less sensitive to the swept angle, and such phenomenon is better observed for small swept angle region. Eventually, it is interesting to know that the discrete slotted CFJ configuration demonstrates a promising enhancement in aerodynamic performance in terms of high lift, low drag and efficiency. 展开更多
关键词 Active flow control co-flow jet Continuous injection Discrete injection slot Simple high-lift device
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部